
NASA Technical Memorandum 104579

Radar Ocean Wave Spectrometer (ROWS)

Preprocessing Program (PREROWS2.EXE)

User's Manual and Program Description

Charles R. Vaughn

January1993

(NASA-TM-I04579) RADAR OCEAN WAVE

SPECTROMETER (ROWS) PREPROCESSING

PROGRAM (PREROWS2.EXE). USER'S
MANUAL AND PROGRAM DESCRIPTION

(NASA) 90 p

N93-20160

Unclas

G3/48 0147552

_L

\

[]

_-__

NASA Technical Memorandum 104579

Radar Ocean Wave Spectrometer (ROWS)

Preprocessing Program (PREROWS2.EXE)

User's Manual and Program Description

Charles R. Vaughn

Laboratory for Hydrospheric Processes
Wallops Flight Facility

Wallops Island, Virginia

\
\

National Aeronautics and
Space Administration

Wallops Flight Facility
Wallops Island, Virginia 23337

1993

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 USER

2.1

2.2

INSTRUCTIONS

DOS menu

2.1.1 DOS menu FK3 functions

EXABYTE menu

2.3

2.4

2.5

2.2.1 EXABYTE menu FK2 functions

Merge GPS, INS and ROWS data

2.3.1 General merging instructions
2.3.2 INS data

2.3.3 GPS Latitude and Longitude data

Waterfall display color codes

Log tape

3.0 RECORD FORMAT

3.1 Raw data record format

3.2 Data types for modified data

4.0 DISCUSSION

5.0 PROGRAM DESCRIPTION

6.0 REFERENCES

APPENDIX I: PROGRAM SOURCE CODE

1

2

3

5

6

8

8

11

12

13

14

15

16

18

20

22

25

26

\

RECEI'L'N_ PA,qEI ;t_,_NK HOT FIi.I_D
, L

" . t ,,i,£r_I]0Ii_k/

o.°
Ill

1.0 INTRODUCTION

The Radar Ocean Wave Spectrometer (ROWS) is an airborne radar system that measures the

backscattered radar signal from the ocean's surface. Jackson et al. (1985) describe the radar

subsystem, while Ward (1992) describes the recent modifications to the data acquisition

subsystem. The data acquisition subsystem records ROWS data and auxiliary data in a sequence

of 1024 byte records on an 8 mm digital tape using an EXABYTE 8200. Each of the 1024 byte

records includes a header, 700 bytes of radar signal, time, the radar antenna rotation angle (shaft

angle), aircraft pitch and roll from the aircraft INS, and the time delay between the time of radar

pulse firing and the time recording starts.

PREROWS2 (for PREprocessing of ROWS data, version 2) is a compiled pc program written in

Microsoft QuickBasic 4.5. The program allows previewing a ROWS data tape for data quality,

copying of appropriate sections of data to a DOS file, and the subsequent reviewing of these
DOS files. PREROWS2 is a modified version of PREROWS and is written for the ROWS data

acquisition subsystem as improved for use with the Grand Banks ERS-1 SAR validation mission.

Most of the features of PREROWS2 can be used with the earlier data. However, there will be

some problems with the data presentation; as will be readily evident if the program is used for
these earlier missions.

The copy feature provides for transferring a sequence of records from the 8 mm tape to a DOS

file on a pc. This is usually advantageous for intensive data review and processing because of

the relatively slow output speed of the EXABYTE. In addition, if the operator wants to step

backwards through a file, the EXABYTF_. 8200 is prohibitively slow, whereas the operation is

very quick with a random access device.

The location of the aircraft as determined by a GPS receiver, and some of the outputs from the

aircraft INS system, were available for recording. These data are not yet recorded directly into

the ROWS data stream; rather they are recorded independently on a separate pc. In each data

record, more than 150 unused bytes exists that can be used for ancillary data. A provision exists

in PREROWS2 to merge the separately recorded data with the ROWS data onto a new data tape.

The user should remember that PREROWS2 is not a polished commercial program. There are

many areas where, time and value permitting, improvements can be made. In addition, each

mission usually has its own peculiarities that require program modifications. The discussion that

follows highlights some of the general features that can be improved and some of the specific

code that is deficient in some way. Program areas that may require continuing maintenance, such
as the MERGE feature are discussed in detail.

2.0 USER INSTRUCTIONS

PREROWS2 operates on either an EXABYTE file taken with the ROWS radar, or on a ROWS

file copied from the original 8 mm tape to a pc hard disk. This program is menu driven with the

following primary functions:

1. Producea time log of anEXABYTE tape.

2. Locate any record within a ROWS file that exists on tape or in a DOS file.

3. Copy a block of records from an EXABYTE tape to a DOS file.

. Convert time and aircraft pitch and roll on an 8 mm tape file to ASCII values and

output to a DOS file. The output is an average of 100 successive pulses.

. Produce successive screen displays of radar waveforms annotated with ancillary

data such as aircraft pitch and roll, radar antenna rotation angle, radar trigger

delay, and both system time and pc "tick" time.

6. Produce a "waterfall" screen display of radar waveforms.

o Merge an original ROWS 8 mm tape with INS, GPS, and other data onto a second

8 mm tape.

These functions are explained more fully below.

[NOTE: PREROWS2 implements procedures for use with the ERS-1 SAR validation

mission. The earlier missions SAXON and SWADE should be processed with PREROWS,

the predecessor to the present version. If PREROWS2 is used with these earlier missions,

the user should be aware that certain features won't work and others might show spurious

results.]

When first run, PREROWS2 displays an information box and ten small highlighted boxes at the

bottom. These boxes represent the ten function keys FK1 through FK10. This highest level menu

allows the user to select the source of the data file. Use FK2 or FK3 to select a DOS or

EXABYTE file respectively. The information box is blank in this menu because no data source

has been selected.

[NOTE: The EXABYTE must be turned on before pressing FK3. If an EXABYTE is not

on, the computer will lockup and have to be rebooted.]

Two other function keys are active: FIO presents a display of the version and date of the

program being run; FK10 exits the program and returns operation to DOS.

After selecting a file source, new function key selections are shown. These new selections allow

a user to perform several activities. The selections available from the highest level DOS and
EXABYTE menus are described next.

2

2.1 DOS menu

The sole purpose of this menu is to allow opening or closing a file, or to calling another menu

where actual processing can be done. When first entering this menu from the main menu (or after

selecting FK9 at this level), the information box is essentially blank. The record pointer is at -1

to indicate that no DOS file is open. The ten function keys now provide the following choices:

FKI: MainMnu

Returns to the MAIN MENU.

FK2: OpnFile

Allows operator to open a DOS data file. The program stays at this menu level but

now displays the complete file path and name, file starting and stopping times, the

total number of records in the file, the present record number, and the time

associated with this record. The record number cannot be changed at this menu

level. FK3 is used to change the record number.

[NOTE: The program error trapping for entry of the name of a non-existent

file is faulty. The program will recover properly by hitting the ENTER key

a number of times.]

FK3: PreProc

Goes to another menu that allows selection of the record number for processing,

display of the radar waveform in oscilloscope fashion, and display of the radar

waveform in a color coded waterfall display.

FK4 - 8: NOT USED

FKg: ClsFile

Closes any open DOS file.

FK10: EXIT

Exits the program and returns to the DOS prompt.

2.1.1 DOS menu FK3 functions

The DOS PreProc function key accesses another screen that defines a new set of operations for

the keys. Two of these operations display the radar waveform on the computer screen. The

function keysprovidethe following operations:

FKI: DosMen

Returns to the DOS menu.

FK2: NOT USED

FK3: Rec #N

Selects a record number at which to start other operations.

FK4: NOT USED

FKS: .Wtrfal

Produces a waterfall display of ROWS waveforms starting with the active record.

Three pieces of information are needed after making this selection: the starting

and ending byte numbers for the display and which of six (at present) color

selections to use for the display. The color selections will be discussed below. The

starting and ending byte numbers are referenced to the radar waveform itself; ie.,

byte 1 is the first radar waveform byte (which will be byte 51 in the actual

record); the highest byte number allowed is 700.

The maximum number of bytes that can be displayed on each waveform is 420.

If the difference between the stopping and starting points on the waveform is

greater than 420, the end of each waveform will be dropped.

FK6: DspDat

Displays a single ROWS waveform and annotates it with ancillary data. The

operator can select to step singly through a file by pressing the keyboard f key;

or, by pressing ALT-f the program steps automatically through the file. Once past

the first record, the file can be displayed in reverse order by pressing the keyboard

b key to backup a single record, or ALT-b to continuously display backwards

through the file.

After pressing FK6, you are asked to enter the first and last bytes for display. The

byte range for a waveform is from one to 700. The speed of display depends on

the number of bytes to be shown.

[NOTE: There is no error trapping for an input byte number greater than

700; the program will crash if the ending byte is greater than 700. Also, there

is no error trapping if the starting byte number is greater than the ending

4

byte number.]

FK7 - 9: NOT USED

FKIO: EXIT

Exits the program and return to the DOS prompt.

2.2 EXABYTE menu

This highest level EXABYTE menu differs from the highest level DOS menu in that processing

can be initiated; tape logging and tape merging are done here. The processing activities that

parallel the DOS activites are accessed by the PreProc key, just like they are under the DOS

menu. The ten function keys now provide the following:

FKI: MainMnu

Returns to the MAIN MENU.

FK2: PreProc

Goes to another menu that allows selection of the file number and record number

for processing, display of successive radar waveforms in oscilloscope fashion,

display of radar waveforms in a color coded waterfall display, copying a block of

records from the EXABYTE to a DOS file, decoding and copying time and

aircraft pitch and roll angles to a DOS file, and merging an original EXABYTE

data tape with ancillary data (GPS, INS etc. data) to a second EXABYTE.

FK3 - 4: NOT USED

FigS: LogExb

Logs all files on a tape. The log gives the starting and ending time of each file

and the number of records in each file. The information for each file includes the

starting and starting times of each continuous sequence of records within the file

and the number of records in the sequence. The output goes to a DOS file and the
screen. See section 2.5 for more details.

FK6: NOT USED

FKT:

Merges INS, GPS, and other ancillary data with ROWS data on an EXABYTE

tape. The merge requires an ASCII file with file name information and radar gain

settings. The merge is done to a second EXABYTE. See section 2.3 for details.

FK8: NOT USED

FKg: Initize

Reinitializes the EXABYTE tape deck.

FIO0: EXIT

Exits PREROWS2 and return to the DOS prompt.

2.2.1 EXABYTE menu FK2 functions

This selection provides functions that parallel those of FK3 under the DOS menu.

[NOTE: The first time this menu appears after a new tape has been put in the EXABYTE,
FK2 should be selected and a file number entered. This should be done even if FILE #1 is

being used and a one appears as the file number in the information box. In certain

circumstances, the record number counter is off if this selection isn't done first.]

Besides those functions that parallel the DOS functions, this selection provides for copying a

block of records from the tape to a DOS file, and for creating a time sequence of a 100 pulse

average of aircraft pitch and roll that is output to a DOS file.

FKI: MainMnu

Returns to the previous menu

FK2: File N

Moves the readhead to the beginning of file number N on the tape. If there are

less than N files on the tape, the read head SHOULD be positioned to the end of

the last file on the tape. The menu display should show the correct file number,

stopping time, and total records for the file. The file starting time will not be

shown until record 1 is selected and the tape is actually positioned there.

[NOTE: If the tape is positioned to a file other than #1, and FK2 is chosen

AND FILE #1 then chosen, a tape rewind will be performed and all

EXABYTE pointers reinitialized. This is a good way to reset pointers if the

record number or file number showing on the display don't seem to be

6

correcL]

FK3: Rec #N

Selects the record number within a file. If the selected number is greater than the

number of records in the file, the tape will stop at the end of the last record in the

file, the total number of records displayed, and the ending time of the file

displayed correctly.

[NOTE: If a record number Is chosen that is less than the present record

number, the EXABYTE will move backward VERY SLOWLY to the proper

record number. Always move forward through a tape unless it is absolutely

necessary to do otherwise.]

FK4: CpyFile

Copies a sequence of records from an 8 mm tape to a DOS file. You will be

asked to supply a starting and ending record number for copying.

The starting record number can be before the number where the tape drive

readhead is currently located. If it is, read the NOTE above for FK3.

FKS: WtrFall

Produces a color coded waterfall display of the received waveform signal strength.

The display starts with the current record number. Three pieces of information are

needed: the starting and ending byte numbers for the display and the color

selection (one of six) to use for the display. The color selections will be discussed

below. The starting and ending byte numbers are referenced to the radar waveform

itself; ie., byte 1 is the first radar waveform byte, (byte 51 in the actual record).

The maximum number of bytes (radar samples) that can be displayed on each

waveform is 420. If the difference between the stopping and starting bytes on the

waveform is greater than 420, the waveform will be truncated.

FK6: DspData

Displays a single ROWS waveform and annotates it with ancillary data. The first

waveform will be the record where the read head is presently located. Read the

section above for DspData using a DOS file for additional information.

The display can be paused at the end of a waveform by pressing the keyboard 12.

Any subsequent key will resume plotting. Anytime a plot is being produced, you

can abort plotting and return to the calling menu by pressing ESC.

[NOTE: Plotting does not terminate properly at the end of a file. Plotting

continues beyond the end-of-file mark (or beyond the end of data if no EOF

is present) and the record counter continues incrementing. If such a situation

arises, hit ESC. It will then be necessary to reset everything by either going

back to file #1 or by returning to the previous menu and doing a RESET.]

FK7: PtchRol

Converts time, and aircraft pitch and roll in an 8 mm tape file to ASCII values

and outputs to a DOS file. Pitch and roll are averaged for one second.

FK8 - 9: NOT USED

FK10: EXI._._!T

Exits PREROWS2 and return to the DOS prompt.

2.3 Merge GPS, INS and ROWS data

During the ERS-1 SAR validation mission, GPS and INS data were collected and saved in pc

files separate from the actual ROWS data. Additionally, a notebook was used to record

information that is necessary for processing the radar data. The original ROWS data is saved in

a continuous sequence of 1024 byte records on EXABYTE tapes. The records have sufficient

unused bytes that they can accommodate the relevant parts of the GPS, INS, and notebook data.

These instructions pertain to the MERGE feature of the program PREROWS2.BAS. This feature

provides for merging data from an original ROWS Exabyte tape with INS and GPS data that are

in pc files. The merged files are stored on tape on a second Exabyte. In addition to the INS and

GPS data, there is a provision to include a mission name, date and takeoff time, along with a

time bias between the clocks that recorded time for the INS file and the ROWS file. Finally,

there is a provision to include IF gain data during the merge.

2.3.1 General merging Instructions

The following five steps are necessary to do a proper merge:

1. Set up two EXABYTE tape drives for use.

Two EXABYTE drives are needed on the same SCSI line. The drive from which

the original ROWS data is being read must be set to SCSI address 5. The drive

to which the merged data is written must be set to address 0.

8

2. Createa mergeinformationfile.

Create a file that contains information about the mission. This file tells the merge

routine where to find the other data files and provides additional information that

can be used for later tape identification and data processing. A sample MERGE
information file looks like this:

ERS-1 Nfnd* Mission name (10 characters maximum)

11\14\91" Mission date

23:35* Mission takeoff time (UTC)

D:_ERSI\lll4WM_lll4P.INS* INS data file name

D:_ERSI\lll4_PM_lll4P.OPS* GPS data file name

35* INS ahead of ROWS by 35 seconds (decimal secs)

23:59:10 28" *

01:21:30 26* Table for total system IF gain.

01:22:26 29* *

A minimum of seven lines MUST be present for a good merge and they must be

in the order shown above. Some of the lines may be left blank, but they must be

included. A more detailed description of the seven lines follows:

Line 1: An appropriate name, no longer than 10 character, can be given to the

mission. It is useful to give a name so that the merged tape can be
identified at a later date if its label is lost.

Line 2: The mission date should be the date corresponding to the UTC of the

airplane takeoff time.

Line 3: The airplane takeoff time is in UTC. It doesn't need to be very accurate,
but it should be earlier than the first ROWS data.

Lines 4 & 5: These are the pc file names of the GPS and INS data respectively. It is a

good idea to include the complete DOS path with the file name. It is not

necessary to have INS or GPS data. Just leave blank lines where necessary.

Line 6: The ROWS pc and the INS pc each records time from its own clock. If

there is a bias between these two clocks it can be corrected during the

merge. In general, the bias cannot be determined without comparing the

pitch or roll data from the two sources and determining any phase shift
between them.

Lines 7-: Starting at line 7 ROWS the tota___._lsystem IF gain can be included with the

merge. The time of a gain change is recorded in the first column and the

gain in the second. There must be at least one space between the two

columns. The first gain is the gain when the mission begins. If the first

gain isn't known, enter a -99. A maximum of 100 gain changes per

9

missioncanbe accommodated.

Theprogramrequiresthat the first times in the INS and GPS files and the aircraft

takeoff time in the Information file not differ by more than 1h 59 =.

It is not necessary to include the comments (or the asterisk, if there is no

comment). However, at least one space must exist after the last character of

the actual data (or file name) even if no comment exists. If some of the data is

missing it is probably a good idea to include a few spaces and then an asterisk
and comment to the effect that there is no data. At least one line must exist that

represents system gain, even if the gain is unknown.

3 Insure that the INS data that covers the period of time of the 8 mm tape is in one

pc file,

The INS data for a single flight must be in a single pc file. If the data is located

in several file, it is necessary to concatenate the files into one file. It is important

that the files be concatenated in correct time sequence.

o Edit the GPS data file to eliminate "spurious" records,

The GPS data for a single flight must be in a single pc file. If the data is located

in several file, it is necessary to concatenate the files. It is important that the data

be concatenated in correct time sequence. An occasional GPS file will have what

appears to be a spurious line at the top of the data. Any spurious data lines must

be removed before the program will work correctly.

5. Run the merge program.

a. Run PREROWS2.

b. From the MAIN MENU select Function Key 3 (EXABYTE).

c. From the EXABYTE menu select Function Key 7 (MERGE).

d. Enter the name of the MERGE INFORMATION FILE.

The program will now merge the original ROWS tape with the available data identified in the

merge information file. Each ROWS record is read and decoded. Ancillary data is similarly read

and decoded and then time synchronized with the ROWS record. Be aware that this process takes

about 10 times longer than the time it took to record the original data. Thus, if there are several

hours of data on the original tape, merging will take 10 times several hours!

10

Eachmerged tape file(s) record includes the following:

1. Raw, unprocessed, ROWS radar return;

2. Antenna gain (IF attenuation);

"Corrected" antenna shaft angle;,

4. "Corrected" pc real-time without the spurious FF FF bytes that occurred;

[NOTE: After this program was written it was discovered that other spurious

real-time words can occur. The user should be aware of the possibility they

may exist.]

5. GPS latitude and longitude;

6. INS block of 10 words presently stored on floppy disk;

7. pc "tick time" stored as an eleventh word with the INS data;

8. A "NO DATA" indicator (FF FF or -32768) for missing data;

9. A modified header that properly reflects the above record structure.

10. The mission name and date.

[NOTE: The mission name and date are stored in the last 18 bytes of each

record. The existence of this information is not recognized by the header. See

section 4.0 below for more information.]

After the last record of the original data tape is read and written to the merged tape, an EOF will

be written to the new tape.

2.3.2 INS data

INS data from a digital Litton 92 was recorded on a separate pc during the ERS-1 SAR

underflights. A DAS-429PC/HC interface card from Excalibur Systems Inc was used in the pc.

The 32 bit word format in the pc file is dictated by the Excalibur interface. The specification is

taken from page 9 of the DAS-429PC/HC manual.

The format of a 32 bit INS data word adheres to the ARINC standard; 20 bits represent data, 4

bits represent status, and parity, and the remaining 8 bits specify a data label. The

DAS-429PC/HC reformats each ARINC word as follows:

11

BYTE 1 BYTE 2 BYTE 3 BYTE 4

pc ARINC pc ARINC pc ARINC pc ARINC
bit bit bit bit bit bit bit bit

7 Data 13 7 Label 01 7 Sign 29 7 Data 21

6 Data 12 6 Label 02 6 Data (MSB) 28 6 Data 20
5 Data (LSB) 11 5 Label 03 5 Data 27 5 Data 19

4 Data (or SD1) 10 4 Label 04 4 Data 26 4 Data 18
3 Data (or SDI) 9 3 Label 05 3 Data 25 3 Data 17
2 SSMstatus 31 2 Label 06 2 Data 24 2 Data 16
1 SSM status 30 1 Label 07 1 Data 23 1 Data 15

0 Parity status 32 0 Label 08 0 Data 22 0 Data 14

Each data word is a maximum of 20 (or 18) bits plus the sign bit. Within the 32 bit word, these

20 (or 18) bits are obtained by taking bytes 3, 4 and 1 in that order with the most significant bit

(MSB) as the sign of the data. The data bits need to be right justified in the new 32 bit data

word. The 20 bit words use bits 4 and 3 of byte 1 as the least significant bits of the new 32 bit

data word. For the present data set, only BCD latitude and longitude use the 20 bit word format.

The 10 ARINC data words, and their word order on disk are:

decimal hex description # Range Resolution

label (bits)

8 08 BCD latitude 22 -90,+90 0.1 min

9 09 BCD longitude 22 -180,+180 0.1 min

202 CA grnd speed (bin) 15 0 - 4095 0.125 kts

203 CB track angle 15 -180,+180 0.0055 deg

204 CC true heading 15 -180,+180 0.0055 deg

212 D4 pitch angle 15 -180,+180 0.0055 deg

213 D5 roll angle 15 -180,+180 0.0055 deg

241 F1 altitude 20 -131072, 131072 0.125 ft

214 D6 pitch rate 15 -128,+128 0.0055 deg/sec

215 D7 roll rate 15 -128,+128 0.0055 deg/sec

Time is recorded with each INS record. This time is the "tick" time in the pc that records the INS

data. The INS pc real-time clock is set each day by voice call from one of the airplane crew who

reads a master clock. The time used is UTC. At the time the real-time clock is set, the "tick" time

is automatically reset to the correct count by the computer. During a mission, the same procedure

is followed simultaneously with the ROWS computer clock. However, during data reduction the

time synchronization between the ROWS and INS data has to be done using the real-time clock

in the ROWS data records. The "tick" time from the ROWS pc cannot be used because it loses

excessive amounts of time through interrupts during the actual data acquisition process.

2.3.3 GPS Latitude and Longitude data

PREROWS2 assumes that the GPS data file is formatted using the NMEA Global Positioning

12

Satellite Position data format, which is ASCII. A typical line of data in the GPS NEMA format
reads:

$GPGGA, 124559.0,4855. 9774,N,05434.0569,W, 1,6,01.4, +99,M,+000,M

A comma delimits the data fields. The second field is time in hours, minutes, and seconds,

without delimiters. The third field is latitude, the fourth indicates whether latitude is north or

south. The fifth field is longitude, the sixth indicates whether longitude is east or west. Latitude

and longitude are in degrees and minutes with no delimiter between. The above line is interpreted

as 12 hours 45 minutes, 59.0 seconds with a position of 48 degrees 55.9774 minutes North

latitude, 054 degrees 34.0569 West longitude. The remaining fields are ignored by this program.

Data in the GPS pc file is updated once per second on the GPS second. At present (1992) GPS

time is running ahead of UTC by 8 seconds. This time difference must be compensated for when

merging GPS with other data sets having time recorded as UTC. This time difference is written
into the subroutine TimeGPS$.

The MERGE subroutine converts GPS latitude and longitude into minutes of arc as a long signed

integers (32 bits) with the least significant bit representing 0.0001 minutes of arc. Thus, a sample

GPS output

4855.9774,N,05434.0569,E,

is converted to 32 bit integers as

(48 x 60 + 55.9774) x 10^4 x (+1) = 29359774

(54 x 60 + 34.0569) x 10^4 x (-1) = -32740569

With the first byte in a ROWS record defined as number one (as opposed to zero), latitude and

longitude are merged with the 1024 byte ROWS record. Latitude starts at byte 769 and longitude

starts at byte 773.

Before the GPS data can be integrated with the ROWS data, time needs to be synchronized

properly between the two data sets. GPS data is recorded once per second; ROWS 100 times per

second. The merged tapes will have GPS data recorded only once per second; the intervening

GPS values are represented by a "no data" word (FF FF FF FF). This procedure presents a

problem for later data processing. Section 4.0 discusses the problem.

2.4 Waterfall display color codes

The radar data is digitized by an 8 bit A/D converter, thus giving a range of integers from 0 to

255. Within the QuickBasic 4.5 language, a VGA monitor can display 16 colors. PREROWS2

has six color selections, each defining the integer intervals to be displayed by the 16 colors. The

13

subroutine Levels defines the integer ranges for the six selections. The choice of levels for the

integer ranges was based on actual waterfall plots; the choices being made based on the visual

appearance of the plot. Table I shows the color selections and the associated integer ranges that

go with each color:

TABLE I

COLOR

Black

Blue

C_een

_]sn

Red

Magenta

Brown

White

Gray

Lt Blue

Lt Green

Lt Cyan

I.a Red

Lt Magenta

Yellow

Bright White

COLOR SELECTIONS
1 2 3 4 5 6

0-8

9-14

15-16

17-18

19-21

0-9

38-42

10-11

12-13

14-15

16-17

0-10

11

12

13
.r

14

0-10

28 -29

11-14

15-16

17-18

19-20

0-15

16-30

31-50

51-60

61-70

0-10

21-22

11-12

13-14

15-16

17-18

22-24 18-19 15 21-22 71-80 19-20

25-26 20-21 16 23-24 81-85 21-23

27-29 22-23 17 25-26 85-90 24-27

30-32 24-25 18 27-28 91-95 28-30

33-37 26-27 19-20 29-30 96-100 31-35

31-33 36-40

30-31

32-33

34-35

36 -50

51-255

34-35

36-45

46-55

56-80

81-255

43-48

49 -56

57-63

64-70

70-255

101-110

111-120

121-130

131-140

141-220

221-255

23-24

25-26

27-4O

41-60

61-255

41-45

46-50

51-60

61-75

76-255

2.5 LOG TAPE

One of the first things to do after a mission is to produce a listing of the times data was acquired.

This is accomplished with the LOGEXB function key (FKS) in the first EXABYTE menu. The

tape log subroutine skips in increments of 100 records when looking for time breaks. This saves

considerable time while doing the log because only one out of 100 records has to be decoded.

Because the program skips 99 records, a time break in a recording sequence can only be

determined to within +_49 records. In addition, for the worst case, the number of records in a

sequence can be off by as much as 198 records, or about two seconds in time. Since the log is

only used to indicate the approximate location of breaks in the data, this imprecision shouldn't

14

cause a problem. If more precision is required in locating such breaks, it can be obtained by

stepping through a file one record at a time using FIO (Rec #N) and looking for time jumps on

the display. The following is a sample of a tape log:

FILE NUMBER: 1

Start Time Stop Time Start Stop Number

pc tick pc tick Rec # Rec # Recs
01:39:37 01:39:34.02 1 2 2

01:39:45.23 01:51:58.54 101 73302 73202

01:54:31.45 02:00:23.08 73401 108461 35061

End of file.

Start Time: 01:39:37 Stop time: 02:00:23
Total Records: 108561

END OF DATA.

[NOTE: The program does not give the exact numbers for the Stop Record # and Record

length (ie., number of records) for the last continuous sequence of records in a file. If there

is only one long sequence of non-broken continuous records in a file, these numbers MAY

be correct. In any case, the Starting Time, Stopping Time, and Total Records information

at the end of each file should be correct. If any numbers are incorrect, the errors should

be small; le., record numbers may be in error by one or two and the time by less than 0.1

SecS.]

There is a potentially serious problem with the ROWS data recording that will not be easily

detected with the logging subroutine. The subroutine relies on the pc "tick" timer to determine

the time between two records that are 100 records apart. However, the "tick" timer looses time

if another device interrupts the computer from updating the timer. At the same time, the computer

interrupt can prevent new records (radar pulses) from being recorded. If this happen, there will

still be 100 records per second recorded, but the rea._._ltime gap will be greater than one second.

This happens, in particular, when the EXABYTE tries to write to a bad spot on tape. The write

time can exceed many timer counts. The seriousness of this problem has not been fully explored.

3.0 RECORD FORMAT

ROWS records contains a header, the backscattered radar signal from a single radar pulse, and

a variety of ancillary data. The structure of each record consists of a header terminated with two

ff(hex) bytes, followed by data in the same sequence as the definitions in the header. The header

is composed of a sequence of pairs of two byte (16 bit) integers that designate the type of data

recorded (first integer) and the number of bytes allocated to that data type (second integer).

3.1 Raw data record format

15

The following data typesand lengthsaredefined for the raw recordeddatastartingwith the
ERS-1mission:

TYPE LENGTH
(bytes)

0000 50
0001 700
0002 4
0003 2
0004 5
0006 2
0005 2
0007 1
0008 2
0009 4
0010 4
0011 80
ffff 0

856

TYPE DEFINITION

The header
ROWSradarreturnwaveform
Pc clock "tick time"
Waveformdigitizer trigger delay
Time from pc real-timeclock
Aircraft roll angle

Aircraft pitch angle

Antenna shaft "angle" ('No data recorded)

Antenna shaft angle

Observer latitude

Observer longitude
INS data

Empty data type (header terminator)

(total bytes presently defined in the 1024 byte record)

The header itself uses the first 50 bytes of each record (two bytes each for the 12 data types plus

two bytes for the terminator). After the header are the 806 data bytes defined by the header. The

remaining 168 (1024 - 856) bytes are not used. Note that the data types do not need to be

recorded in a monotonically increasing order; but, if the order is changed, the header also needs

to be rearranged to reflect this new order.

The data types have the following formats:

TYPE description

0000 The header

0001 ROWS radar return waveform.

700 radar samples from an 8 bit A/D converter. The samples are saved as

successive 8 bit binary integers.

0002 Pc clock "tick time".

Number of pc clock "ticks" since midnight as determined by the data acquisition

computer. There are approximately 18.20648 clock ticks per second. The result is

stored as a 32 bit (4 byte) binary integer.

16

0003 Waveformdigitizer triggerdelay.

The time delay from the radar pulse transmission ("main bang) to the start of

waveform digitizing. The delay is determined with a 10 MHz clock (thus

providing a resolution of lOOns) and is recorded as a 16 bit integer. This delay

corresponds to the range from the aircraft to the first recorded point on the ROWS
radar return waveform.

0004 Time from pc real-time clock.

A five byte field is reserved for time, although only three bytes are used for pc

time. The encoding format is binary coded decimal (BCD). Byte 5 (right most)

represents hours; byte 4, minutes; byte 3, seconds. Bytes two and one are not used

(they are reserved for the possibility that another time code may be used in place

of the pc real-time clock.) The actual data encoding is for the two nibbles of each

byte to be the binary representation of the two digits of each time unit.

0006 Aircraft roll angle.

12 bit integer representing 1/(2"12) of 360 degrees or 0.08789 th of a degree.

0005 Aircraft pitch angle.

12 bit integer representing 1/(2"12) of 360 degrees or 0.08789 th of a degree.

0007 Antenna shaft "angle"

This data type is a carryover from earlier ROWS missions when the full shaft

angle word was not available. At present, nothing is recorded here, although the
header indicates otherwise.

0008 Antenna shaft angle.

The rotation angle of the ROWS antenna is obtained from a 14 bit shaft angle

encoder whose output is in BCD format with a resolution of 0.1 degrees. The four

nibbles represent hundreds of degrees, tens of degrees, degrees, and tenths of a

degree. Bits 15 and 16 are not used by the encoder.

[NOTE: Bit 15 flags which antenna is used for that record. The altimeter

horn is indicated by a 1, the scanning antenna by a zero (0).]

0009 Observer latitude.

Not yet directly available to ROWS.

17

0010

0011

Observerlongitude

Not yet directly available to ROWS.

Inertial Navigation System (INS) data.

Not yet directly available to ROWS.

[Note: This data type represents more than one piece of data. The INS data

type has its own internal structure which, for the merged data, at least,

contains eleven variables.]

3.2 Data types for modified data

In principle, the integer designating a data type can be arbitrary within the range of the two bytes

allocated for it. However, it seems useful to reserve a group of integers for a specific class of

data. The classes suggested are "raw ROWS collected data", "raw ROWS data after some type

of preprocessing", "raw ancillary data merged after flight with the ROWS data", and "merged

ancillary data that has been processed". Various miscellaneous data types can be assigned

numbers outside the range of numbers assigned to the broader classes.

Tvoe range Descriotion

00000- 00998 Original ROWS collected data.

01000 Designates ASCII text that is entered either during, or after, the

mission for purposes of annotation.

00999 Flags a file of original data that has been selected so that it only

contains a time contiguous sequence of consistent "good" data.

Length is 0

01001 - 09999 Raw ancillary data.

10000- 10999 Original ROWS data after some type of preprocessing. The last

three digits should be the same as those of the original data. The

particular type of processing can be indicated by the second digit

from the left. This typing method evidently allows 10 different

methods for processing a particular data type before some other

arbitrary type needs to be assigned.

21001 - 29999 Processed ancillary data of types 01001 - 09999.

18

The actualdatatypes,length(in bytes),and formatsusedfor the merged data are:

TYPE LENGTH DESCRIPTION

01001 1 Antenna gain in dB (IF attenuation) from flight log sheets.

01009 4 Latitude from GPS.

A signed long integer with South latitude represented by a negative

number. The integer will represent one-ten thousandth of a degree of arc.

Thus, one degree will be represented as 100000. The largest number that

needs to be represented is _+ 90 degrees, which is _+ 9000000 in the

suggested format.

01010 4 Longitude from GPS with West longitude represented as a negative

number. The largest number will be _+90 degrees. See latitude format for
more information.

01011 80 INS data including independent pc 'tick' time.

This data type contains a block of eleven words, ten taken from the LTN-

92/ARINC-429 digital output from the aircraft INS, and one taken from the

pc "tick" timer in the pc that recorded the ARINC data. The data format

will be the same as recorded on the disk file (ie., no format changes are

made).

10020 4 pc real-time clock data with spurious hex FF FF words set to the correct
time,

A spurious FF FF time word can appear at the start of a new second of

time. It is not clear which second (the previous one or the new one) this

belongs with. However, at a ROWS update rate of 100 pulses per second,

the assignment of the spurious FF FF to the previous time will be adequate.

10021 1 Antenna shaft angle with the one degree bit corrected for dropouts.

Several bits from the shaft angle encoder don't operate. This data type

results from a correction algorithm for the angle. The accuracy of the

correction remains to be determined, However, it is probably better than _

0.4 degrees of arc. Bit 15 still flags the antenna type that obtained the data
for the record.

19

4.0 DISCUSSION

PREROWS2.EXE is a "working" program, subject to modifications as the need arises. As such

it is an evolutionary product. The immediate predecessor to this program, PREROWS, started in

late 1990. Because of the evolutionary nature of the program, there are obvious pieces of

unneeded code, non-uniformity of code structure, half written subroutines, and other symptoms

of non-top down development. Future modifications of a substantive nature will primarily be

needed only as dictated by a change in the actual ROWS hardware. It should be mentioned that

PREROWS is still needed for looking at the data tapes collected prior to August of 1991.

There are several additions to PREROWS2 that might be effected for future missions, even if no

overall hardware changes occur. Starting with the ERS-1 SAP, validation mission, the ROWS

transmitter/receiver switches, on a pulse-to-pulse basis, between a fixed nadir pointing antenna

(altimeter mode) and the off-angle scanning antenna. Thus, a ROWS data file has altimeter mode

data interleaved with azimuthally scanning mode data. PREROWS2 thus displays interleaved

waterfall or waveform displays that are difficult to interpret. For both the waterfall and waveform

displays, a choice should be given to present the data from one antenna or the other.

At present the altimeter mode data is separated from the azimuthally scanned data using a stand

alone program that splits the data into two pc files. Each file can then be looked at using

PREROWS2. The ability to separate these two data types into two files should be made part of

the COPY feature (FK4: CpyFile, under section 2.2.1 above).

The ROWS data acquisition software does not presently put an EOF at the end of a recorded file;

nor does it insert an EOF whenever the radar is shut off but the tape recorder left on. (This

causes a large time gap between successive records.) Because of this, a single ROWS tape file

can be many hundreds of megabytes long with time gaps occurring throughout. Since there are

not presently any ROWS tapes with multiple files on them, PREROWS2 software hasn't been

tested for possible "bugs" while using a multiple file tape. In addition, the merge feature of

PREROWS2 does not have the capability of merging more than one file onto a single tape. If

future missions have multiple files on a tape, PREROWS2 will have to be modified accordingly.

Most of the subroutines in the present program do not read the header to determine which data

types are present; they assume a series of specific data types in a specific order. A more flexible

program would read the header and decode the data as indicated by the data type. The tapes

produced with the MERGE feature have several data types that differ from the raw data.

PREROWS2 processes the data properly because the modified record contains the same variables

(corrected for errors, etc.) with the same lengths and in the same places as the original header

defines. The main purpose of defining these particular data types is to make some hypothetical

future user of the tape aware that s/he is not working with the raw data.

The method used to merge GPS data with the ROWS data has one major drawback. GPS data

is only merged with the record that corresponds to the closest exact second at which it is

recorded. Thus, there are 99 records without GPS data for each one with data. Later, when data

20

is separated into two files, one with altimeter data, the other with the scanning antenna data, there

can be very long stretches without GPS data in one of the two files. In fact, if there were an

exact even number of pulses per second, all GPS data would be merged into one or the other of

the separated file, leaving one file without any GPS data.

For future ROWS operations, more attention should be given to properly using the header in each

record. To date, most of the data analysis software doesn't anticipate future needs. Most of this

software demands a header with 50 bytes and data located exactly where the original ROWS

acquisition software put it and with the same format. This rigidity defeats the purpose of having

a header. For instance, the merge program allows a project name and date to be put in a data

record. Unfortunately there is no room within the 50 header bytes to flag the existence of this

information. The merged records have a project name and date located in bytes 1007 through

1024; unacknowledged by the header and potentially unappreciated by some future user of the

tapes. In addition, several of the variables in a merged tape record can have a varying type

throughout the file. This will happen, for instance, with the real-time when the FF FF has been

corrected, or with the shaft angle for those angles that have been corrected.

The tape logging subroutine should be changed to use anything other than the "tick" timer as a

time source. One approach would be to use the real-time clock and count the number of pulses

that occur between two successive seconds. If the count deviated by more than some allowable

amount (_ 2) then the data for that second could be discarded.

5.0 PROGRAM DESCRIPTION

PREROWS2.EXE is a Microsoft QuickBasic 4.5 compiled program. The Microsoft library

BRUN45.LIB and a library of routines to interface with the EXABYTE 8200 tape deck have

been linked with the PREROWS2 source code to produce a single program. More than 90

subroutines are comprised in the program. Access to the EXABYTE 8200 is provided through

the library of QuickBasic routines written by APtek, Inc. of Rockville, MD.

The main program defines the data structures, declares the subroutines and functions, dimensions

the global variables (including four variables from the two data structures), five constants, and

two string variables, and then calls one subroutine in an infinite loop.

One data structure (FileStats) holds the filename (for a DOS file), a file number (for a tape file),

the current record number, the total records in a file, a pointer to the present byte in a record,

and the starting and ending times of a file.

The second data structure (Dta) defines variables that hold the decoded data from a 1024 byte

data record. As presently written, this data structure rigidly defines the variable types and lengths.

If any of the data string lengths change (for instance, if the header length changed from 50 bytes,

or the INS data were longer than 80 bytes), then this data type would have to be changed and

the program recompiled.

21

Most of the subroutines have some internal documentation. This section will only highlight those

routines most likely to be affected by future changes in the ROWS hardware. For the most part,

the discussion of the subroutines follow alphabetically.

FUNCTION ADTrlggerDelay returns the time delay between the time of transmission of a radar

pulse and the start of the A/D converter. The delay is returned as meters below the

airplane. The actual delay is determined by a simple counter. There is a count bias of 74

units written into the program to accommodate a hardware induced bias of the same

amount. If the hardware bias is changed, this subroutine will have to have its bias

changed.

SUB AscllPitchRoll provides a time sequence of aircraft pitch and roll from a file on 8 mm

tape. Pitch and roll are averaged over 100 records and output to a DOS file a one sample

per second. The average can be altered by changing the value of the variable NAve% in
the subroutine.

FUNCTION ClockTlme$ presently returns Dta.TrueTime, which is the time as recorded from

the pc real-time clock. Most routines that need time call ClockTime$. If a time source

other than the pc real-time clock is available for display or data processing, it is only

necessary to have CIockTime$ return this new time. This indirect way of accessing time

saves the labor of searching all routines for a specific time (Dta.TrueTlme, for instance)

and replacing that specific time with the new time.

Dta also provides the variables Dta.TickTime, which is the time returned by the pc "tick"

timer, and Dta.AccurateTime. This latter time was provided by an external time code

generator for missions prior to the ERS-1 SAR Validation Mission, and did not exist after

August, 1991. Since Dta.AccurateTime was recorded in the same byte locations

Dta.TrueTime, it is necessary to insure the correct time is used with the particular

mission be looked at. The forerunner program to PREROWS2 uses Dta.AccurateTime.

SUB DataTypes is part of a package of subroutines that will be used to read a header and

process the data according to the data types specified by that header. It is incomplete and
not used.

SUB DecodeHeader translates the header string into a two dimensional short integer array with

each row having the numerical data type and the number of bytes in that type.

SUB DecodeRecord assigns the individual variables in a ROWS record to the data structure Dta.

SUB DosFile defines the highest level DOS menu.

SUB DosPreProcessing defines the menu that calls some of the actual data manipulation

subroutines. There are presently five undefined function keys in this menu that can be

used to perform additional operations.

22

SUB ExbFile is the companion subroutine to DosFile and defines the highest level EXABYTE

menu.

SUB ExbPreProcesslng is the companion subroutine to DosPreProcesslng. There are only two

undefined function keys available for additional operations.

SUB ExbStatus is provided to interpret all the status codes return by the EXABYTE drive after

it has been accessed. This routine has not been completed and is not presently use.

SUB ExbTapeLog has been explained in some detail in section 2.5 above.

SUB FlleN moves the EXABYTE readhead to the file number that is entered. At present there

is only one file on any ROWS 8mm tape. If a larger file number is chosen the tape drive

will search until the end-of-data (EOD) is encountered.

SUB GPSDisplay simply prints, if present, the GPS latitude and longitude on the radar

waveform displays. At present GPS only exists in a ROWS record if it has been merged
with the record.

SUB GPSLatLong strips GPS latitude and longitude from a GPS NEMA data format record.
Details of the GPS format and other related information is contained in section 2.3 above

FUNCTION IntergerTIME converts a time string that is in hours, minutes, and seconds with

delimited by colons (:) into seconds as a long integer.

SUB MERGE should be useable to correct errors in ROWS data and save the corrected records

to the new tape - even if no INS or GPS files are available for merging. PREROWS2

hasn't been tested to see if all subroutines will work properly if no INS or GPS file

names are available. However, if there are program "bugs" that prohibit "merging" in this

manner, they should be easy to fix. With the present structure of PREROWS2 it seems

MERGE is the most logical place to do real data preprocessing in a bulk mode.

FUNCTION NameDATE is used by MERGE to put a mission name and date onto the new tape

As noted in section 4.0 this information "hangs out" in a region of a ROWS record that

is not recognized by the header as having information.

FUNCTION NewHEADER rigidly defines the header structure of a merged data tape. As

mentioned in several sections above, this rigidity should be removed in some future

version of this program.

SUB ParameterDisplay recognizes the GPS merged data type and displays the data, if present

The subroutine needs to have code added to recognize the other data types present on a

merged tape, and to read and display the mission name and date, if added.

23

FUNCTION PitchRoll has a 120 degree bias "correction" written in because of miswiring of the

shaft angle encoder. This subroutine will have to be changed if the wiring is corrected.

SUB PiotRadReturn sets up the logic for using either a DOS file or EXABYTE file, for moving

stepping single or continuously through a file, or for stepping forwards or backwards (for

a DOS file). The actual plotting is done in the two subroutines StepForwards and

StepBackwards.

SUB PresentFile prints the file status information to the screen. The routine doesn't presently

recognize the merged data types.

FUNCTION ShaftAngle partially corrects for a serious error in the recorded data from the shaft

angle encoder. The correction is only performed in the MERGE subroutine.

FUNCTION TimeGPS has an 8 second subtraction from GPS time to synchronize it with UT.

This correction may have to be updated for future missions.

SUB Waterfall plots very slowly. If increased speed is required it may be necessary to write

an assembly language routine to write directly to video ram. This routine should be

written so that it can be linked with PREPROWS2 during compilation.

6.0 REFERENCES

Jackson, F. C., W. T. Walton, and P. L. Baker. 1985. "Aircraft and Satellite Measurements of

Ocean Wave Directional Spectra Using Scanning-Beam Microwave Radars. J.G.R., 90: 987-1004.

Ward, J. L. 1992. A PC-Based Data Acquistion System as Applied to the Radar Ocean Wave

Spectrometer, NASA Technical Memorandum 104560.

24

APPENDIX h PROGRAM SOURCE CODE

This section contains the PREROWS2 source code. Additional comments have been added to the

original program. These are printed in a bold italic font.

PREROWS2.BAS (PREprocessing of ROWS data) [cry 10/13/92]

QuickBASIC source code for reading from or writing to a ROWS "standard"

1024 byte record data file. The file can be either a DOS file or a

file on an EXABYTE streaming tape.

The "standard" format starts with a header that describes the subsequent

DATA bytes in the record. The header has pairs of integers (2 bytes each),

the In,st designating a data type, the second designating the number of

data bytes used by that type. The sum of the number of bytes in the header

plus the bytes in all the data types must equal 1024.

The Aptek OuickBasic library qbx.lib is needed for proper compilation

of this program.

OFTION BASE 1

TYPE FileStats

HleName AS STRING " 40

HleNo AS INTEGER

Record AS LDNG

TotalRecords AS LONG

ByteLoc AS LONG

TStart AS STRING * 8

TEnd AS STRING * 8

END TYPE

' Thefilename with directory and path canna be longer than 40 eharacterm.

TYPE Dta

Header AS STRING * 50

Radar AS STRING * 700

Accurate'lime AS STRING * 11

Tick'time AS STRING * 11

TrueTime AS STRING * 8

TriggerDelay AS SINGLE

Pitch AS SINGLE

Roll AS SINGLE

ShaftAngle AS SINGLE

CorrShaftAngle AS SINGLE

Latitude AS SINGLE

Longitude AS SINGLE

InsData AS STRING * 80

END TYPE

' The present header is fixed at 50 eharaaerm.

' It is probably nat a good idea to use a data structure for the decoded

' variables. The problem with this approach is that it lacks flexibility if

' more data needs to be added to a ROWS record.

' The INS data word is limited to 80 characters.

DECLARE SOB AsclIPitchRoll 0

DECLARE SOB BegEndByte (A%, B%)

DECLARE SOB Blank 0

DECLARE SOB CheckExbStatus (A%)

DECLARE SOB ColorLovels 0

DECLARE SOB CopyDusToDos 0

DECLARE SOB CopyExbToDos 0

DECLARE SOB DataTypes 0

DECLARE SUB DecodeHeader (H$)

DECLARE SUB DecodeRecord 0

DECLARE SOB DfnKy (AS)

DECLARE SOB DosFile 0

' Time, pitch, roll to separate ASCII file.

Define oolors for waterfall display.

This feature hasn't been implemented

Display the types of data.

This subroutine hasn't been completed. It's preseatl.r unused.

Decodes the 1024 byte data record.

Define the function keys.

DOS will be the source device.

25

DECLAR_ SUB DosPreProcessing 0

DECLARE SUB DrlveReady 0

DECLARE SUB EndOfData 0

DECLARE SUB EnterFileName (AS, 135)
DECLARE SUB EnterRecord (A&)
DECLARE SUB ExbFile 0

DECLARE SUB ExbPrePrncessing 0

DECLARE SUB ExbReset (A%)

Display the DOS preprocessing menu.
Test if EXABYTE drive is ready.
Advance the EXABYTE tape to the end of data

Keyboard entry of DOS filename.

An EXABYTE tape has the source file.

Reset the EXABYTE tape deck.

DECLARE SUB ExbStates (AS, B%)

DECLARE SUB ExbTapeLog 0

DECLARE SUB FileN 0

DECLARE SUB FileOpen (AS)
DECLARE SUB FirstMenu 0

DECLARE SUB FkSet (AS0)
DECLARE SUB GPSDisplay (AS)
DECLARESUBHelp20
DECLARE SUB IDLE 0
DECLARE SUB IFGaln, (F%, TTo&, GT&0)
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB

DECLARE SUB
DECLARE SUB

Sense node definltion¢ for EXABYTE.

Produce complete EXABYTE tape log.
Advance the EXABY'IE tape to file N.

' Check if DOS file is already open.
' Main Menu.

' Set the function key names.
' Displays GPS data on waveform display.

' Help menu for PlotRadReturn
' Pause program until operator keystroke.

INFOFH_ (MN$, MD$, Mr&, GTa0, IFN$, GFN$, ITL.9
Keystroke (A%) ' Trap keyboard keystrokes.

LastRecord 0 ' Set file to the final record.
Levels (A%) ' Selects the waterfall display colors.
MERGE 0 ' Merges raw ROWS data on one EXB tape with INS, GPS, and

' IF Gain data onto n second EXB tape.

MergeGPS (MS, S&, RI&, R2&, G&, GF%)
MergeINS (MRS, MIIS, ST&, RT2#, InsT#, InsF%, lnsTL$)

DECLARE SUB Message (A%, 135)

DECLARE SUB MINMAX (A& 0,N, x&, XI,Y&, Yi)

DECLARE SUB NoFile0

DECLARE SUB OpenExisdngFile0
DECLARE SUB OpenNewFile (AS)

DECLARE SUB ParametarDisplay0

DECLARE SUB PlotRadReturn0
DECLARE SUB PresentFile0

DECLARE SUB ProcessMenu 0

DECLARE SUB ReadRecord 0

DECLARE SUB RecordN 0

DECLARE SUB ResetDosStats0

DECLARI_ SUB ResetDta0

DECLARE SUB ResetExbStats 0

DECLARE SUB ResetActlveStats 0

DECLARE SUB Rewind 0
DECLARE SUB STARTINGTIME (S&,M&, l&,G&)

DECLARE SUB StepBackw rds(A%, B%, C%)
DECLARE SUB StepForwards (A%, B%. C%)

DECLARE SUB Update 0

DECLARE SUB ValidROWSFile (AS, B%)

DECLARE SUB Version 0
DECLARE SUB Waterfall 0

DECLARE SUB WaveFormPlot (A%, B%)

DECLARE SUB WriteRecord(l_,F%)

Display color message.
Find the maximum and mlnimum values of a set of numbers.

No file open warning.
Open a DOS ROWS file.

Open a new DOS file for results output.
Display for PlotRadRemrn
Plotradarremm waveform.

Displayopenfilestats.

Displaytheprocessingmenu.
Read a new datarecord.
Set file to record N.

Initialize DOS variables.
Initialize decoded data variables.
Initialize Exb variables.

Initialize operating variables.
Rewind EXABYTE tapedeck.
Used by MERGE to time synchronize GPS, INS, and ROWS tides.

Step backward through DOS file.

Step forward through DOS or EXB file.
Update the screen display
Check is file is valid ROWS file.

Display the PREROWS version and date.
Color coded waterfall display of pulses.
Plot radar waveform.

' Write a ROWS record to a DOS or EXB file.

DECLARE FUNCTION Accurate'TimeS (AS)

DECLARE FUNCTION ADTriggerDelay& (AS)
DECLARE FUNCTION ByteLoc& 0

DECLARE FUNCTION Clock"timeS 0
DECLARE FUNCTION ColorSelection% 0

DECLARE FUNCTION FKeyOnly$ 0
DECLARE FUNCTION GPSLatLong$ (LL$)

DECLARE F'UNCTION IntegerTIME& O'$)

DECLARE FUNCTION KeyCode% (AS)
DECLARE FUNCTION NameDATE$ (N$, D$)

' Decode the externalbox time into hh:mm:ss.

' Decode the A/D converter trigger time delay
' Calculates the byte pointer in the active file.
' Selects Accurate'lime or PcTime for display.
' Color planes for waterfall display.
' Select a function key from the menu.
' Finds latitude and longitude from a GPS dutafde.
' Converts hours, minutes, and seconds to decimal seconds.

' Return keyboard scancode.
' Insert the mission name and date into a merged ROWS file.

26

DECLARE FUNCTION NewHEADER$ 0
DECLARE FUNCTION PcClock'fime$ (AS)
DECLARE FUNCTION Pc'rimeS (A&)

DECLARE FUNCTION PitchRoll! (AS)
DECLARE FUNCTION "I]meGPS& (D$)
DECLARE FUNCTION RotationAngle! (AS)
DECLARE FUNCTION ShaftAngle$ 0

PREROWS2,BAS (cont.)

' Constructs a new ROWS header.

' Decode the pc real-time clock.
' Decode the pc tick time into hh:mm:ss.ss
'Convertaircraftpitch and rolltodecimaldagrea.

'Findtimefrom a GPS file.

'Decode theshaftangleof rotation.

'Correctstheraw shaftangle,

DIM SHARED ColorLevel(0 TO 255) AS INTEGER
DIM SHARED FileSource AS STRING * 3 ' DOS orEXABYTE?

DIM SHARED Heade_(2, 20) AS INTEGER ' Col 1, type; col 2, length
DIM SHARED IERR AS I_ER ' Contains the error codereturned from the most recent EXABYTE call.

DIM SHARED Level(O TO 14) AS IN']'F_ER
DIM SHARED NewRecord AS STRING * 1024 ° This is THE ROWS record
DIM SHARED RowOffSet AS INTEGER, ColOffSet AS INTEGER
DIM SHARED SenseStatus(0 TO 25) AS INTEGER ' Contains the status of the EXABYTE after the most recent operation.

DIM SHARED Active AS FileStats
DIM SHARED Dos AS FileStats
DIM SHARED F.,xbAS FileStats

' Three _.iable kaw the data struc_ FileStats. Active contains ti_

' information from the currently activG fde, variables Dos and Exb contain

' the information from whichever (or both) JOe(s) arG open.

DIM SHARED Dta AS Dta

DIM SHARED NoData AS STRING * 2
DIM SHARED NoDataLong AS STRING * 4

CONST _cksPerSec = 18.20648#

' Define the Dta variable to be the structure Dta.

' Computer clock ticks per second.

CONST BlankLine$ = "

NoData$ = MK]$(-_)99)

NoDataLong$ = MKL$(-999999999)

CONST HeaderLength% = 50
CONST ReadDriveld% = 5

CONST WriteDriveld% = 0

w

' -9999 indicates no data in 2 byte data string.
' -999999999 indicates no data in a four byte data string.

' Length of record header.
' SCSH ID for drive being read from.
' SCSII ID for drive being written to.

SCREEN 0

CLS

ResetActiveStats
ResetDosStats
ResetExbStats
Re._tDta

Hie,SourceS= " "

DO

FirstMenu

LOOP

END

BadFileName:

Message 17, "ILLEGAL FILENAME or "
Message 18, "File doesn't exist."
RESUME NEXT

27

' **** BEGIN SUBROUTINES ****

' Decodes the time delay between the radar mainbang and the triggering

of the A/D converter. The result is given in meters below the aircraft.

The delay is affected in hardware by counting down in a 16 bit

register from FFFF bex. Including the bias mentioned below, the

conversion of the delay to range can be done by representing the

integer as a 4 byte string and then convening it to a signed

long integer as shown below.

CALLed by: DecodeRecord

FUNCTION ADTrlggerDelay& (Bytes$)

Bias% = 74!

IF Active.Record = 1 AND File.SourceS = "DOS" THEN

ADTriggerDelay& = 0

ELSE

Count& = CVL03ytes$ + CHR$(O) + CHR$(O))

ADTriggerDelay& = 50 " .15 * (65535 - Count& - Bias%)

END IF

END FUNCTION

FUNCTION ADTriggerDehty&

' System induced bias to time delay (up through 7/25/91)

28

' Convert time, and aircraft pitch, and roll in a ROWS EXABYTE file to ASCII values. Time is formatted as
' hh:mm:ss and pitch and roll are formatted as decimal degrees. Since the ROWS records dala 100 times per second,
' the pitch and roll are avenged over NAve% : 1(30 records. The output is Io a DOS file at one record per second.

' CALLed by ExbPreProce_ing
i

SUB AsdiFitchRoll

DIM StartRecord AS LONG, StopRecord AS LONG, Skip AS LONG

NAve% = 1(30
Active : Exb

' Number of recordstoaverage. _

PresentFlle

Message 17, "Enter the name of the output file"

OpenNewFile FileName$

IF LEN(FileName$) = 0 THEN
EXIT SUB

ELSE
OPEN FileName$ FOR OUTPUT AS #1

END IF

LOCATE 18, 1: PRINT BlankLine$
Dos.FileName : FileName$
Active.FileName : Exb.FileName
RecordN

Update
StartRecord& = Active.Record - I

DO
LOCATE 18, I: PRINT BlankLine$

StopRecord -- 0
Message 17, "Eater the last record number to copy"

EnterRecord StopRecord
IF StopRecord < StartRecord& THEN

Message 15, "ILLEGAL ENTRY"
SLEEP 1
LOCATE 15, 1: PRINT BlankLine$

END IF

LOOP WHILE StcpRecord < StartRecord&

Formats = "###### ####.#### ####.####"
PitchSum& = 0
RollSum& = 0

AngleConvert! = 360/(1! * NAve% * (2 ^ 14))
k% = NAve% - 1

DO WHILE Active.Record <= StopRecord

FOR i = Active.Record TO Aaive.Record + k%

CALLS XRCHR(NewRecord, 1, IERR%)
Active.Record = Active.Record + 1

RollSum& = RollSum& + CVL(MID$(NewRecord, 762, 2) + CHR$(0) + CHR$(0))

PitcbSum& = PitchSum& + CVL(MID$(NewRecord, 764, 2) + CI-1R$(0) + CHR$(0))
NEXT

Hrs$ = HEX$(CVI(MID$(NewRecord, 757, I) + CHR$(0)))

Min$ = HEX$(CVI(MID$(NewRecord, 758, I) + CHR$(0)))

Sec.$ = HEX$(CVI(MID$(NewRecord, 759, 1) + CHR$(0)))
Seconds& = VAL(Hrs$) * 3600 + VAL(Min.$) * 60 + VAL(Sec$)

SUB AsclIPltchRon

29

PitchAve! = 120! - AngleConvert! " PitchSum&
Roll.Ave! = 120!- AngleConvert! * RollSum&
PRINT #I, USING FormatS; Seconds&; PitchAve!; RollAve!
PitchSum& = 0
RollSum& = 0

SUB AscIIPitchRoa (coaL)

IF 0ERR% AND 128)OR rYe.R% AND 64)OR (IERR% AND 8)THEN EXIT DO
DecodeRecord

Update

LOOP

Active.ByteLoc = ByteLoc
DecodeRecord
CLOSE 01

Update

END SUB

SUB BegEudByte

' Allows user input of the starting sample (byte) number of the radar waveform for use with waveform plotting.
' The waveform has s total of 700 points on a single returned waveform.

i

' CALLed by: PlotRadRetum; Waterfall

SUB BegEndByte (WIStart%, WfStop%)

CLS

LOCATE 13, 16

PRINT "Enter the beginning and ending byte numbers (separated by a"
LOCATE 14, 16

PRINT "comma) that you want to plot from each radar waveform."
LDCATE 15, 30

INPUT ;WtStart%, WIStop%
CLS

END SUB

SUB Bold

' C4LLcd I_: DosFile

SUB Blank

' This rmaine probably dotsn't need to be used, or, if it is, it should

' be used more consistently.

Message 17, "This function key does nothing."

END SUB

30

FUNCTION Bytel_c&

' Calculates the byte location of the readhead (EXABYTE) or file

' pointer (T)OS file) in an open file.

"_ by: ASCllPitchRoll; CoFyExbToDos; DosPreProc¢_sing;
" ExbPreProeessing; ExbTapeLot; OpenExistingF_e;

StepBaelovards; Waterfall
w

FUNCTION ByteLoe&

ByteLoe = (Ac_ive_Record - 1) * 1024 + 1

END FUNCTION

O* * Of * *0 Q 4Q * BO 4000ee * O B • .4 • *_ * 40 • e4 O*OO O* e 0. * e* • e**o* * _* O* o* ** * OO 0_ • * ** B 8. o o* • O* • *o • * • 6 • • # 48 * e* • *o ** • * **o * • *

SUB CheckExbStatus

' CALLed by: PlotRadReturn
v

SUB CheckExbStatus (SS%)

SELEL-'TCASE SS%

CASE 128

VIEW PRINT

LOCATE 25, 28
PRINT "END OF FILE #'; Active.FileNo

IDLE
EXIT SUB

CASE 8

VIEW PRINT
LOCATE 25, 28
PRINT "End of data. No F.OF on last file."

CASE 2

CLS
PRINT "EXABYTE NOT READY"

IDLE

EXIT SUB

CASE 0

CASE ELSE

PRINT "SenseStatus(2) = "; SS%
IDLE

END SELECT

END SUB

31

Returns the time of the present file record. This function is used

throughout the program so that any change in byte locations for the

system time will only require an addition here and the addition of an

appropriate subroutine that does the actual time determination.

CALLed by: CopyExbToDos; ExbPreProcessing; ExbTapeLog;

HleN; GPSDisplay; MERGE;

OpenExistingFile; ParameterDisplay; PcCIock'l_me;

PresentF]le; RecordN; Update;

Waterfall

FUNCTION ClockTime$

ClockTime$ = Dta.Accumte'13me

'Accurate" Time was recorded pre-August 1991

ClockTime$ = Dta.'Tick_me

TlckTime istaken from the pc internaltickcounter

that counts the number of ticks since the previous

midnight. A standard pc has 18.20648 ticks per

second.

ClockTtme$ = Dta.True"l]me

' Troe']3me is taken from the internal pc resl-time
' clock.
y

END FUNCTION

FUNCTION ClockTime$

32

' Define the color levels assigned to the 8 bit integer data values for waterfall display color coding.
¢

' CALLed by: Waterfall

SUB ColorLevels

Levds ColorSelection% ' Select the color levels

FOR i = 0 TO 255
SE_ CASE i

CASE 0 TO Level%(0)
ColorLevel(i) = 0 'BLACK

CASE Level%(0) + 1 TO Level%(1)
ColorLevel(i) = 1 'BLUE

CASE Level%(1) 4- 1 TO Level%(2)
ColorLevel(i) = 2 'GREEN

CASE Level%(2) + 1 TO Level%O)
ColorLevel(1) = 3 'CYAN

CASE Level%(3) + 1 TO Level%(4)
ColorLevel(i) = 4 'RED

CASE Level%(4) + 1 TO Level%(5)
ColorLevel(i) = 5 'MAGENTA

CASE Level%(5) + 1 TO Level%(6)
ColorLevel(i) = 6 'BROWN

CASE Level%(6) + 1TO Level%(7)
ColorLevel(i) = 7 'WHITE

CASE Level%(7) + 1 TO Level%(8)
ColorLevel(i) = 8 'GRAY

CASE Level%(8) + 1 TO Level%(9)
ColorLevel(i) = 9 'LIGHT BLUE

CASE Level%(9) + 1 TO Level%(10)
ColorLevel(1) = 10 'LIGHT GREEN

CASE Level%(10) + 1 TO Level%(11)
ColorLevel(i) = 11 'LIGHT CYAN

CASE Level%(ll) + 1 TO Level%(12)
ColorLevel(i) = 12 'LIGHT RED

CASE Level%(12) + 1 TO Level%(13)
ColorLevel([) = 13 'LIGHT MAGENTA

CASE Level%(13) + 1 TO Level%(14)
ColorLevel(i) = 14 'YELLOW

CASE IS > Level%(14)
ColorLevel(i) = 15 'B_GHTWHITE

END SELECT
NEXT

END SUB

SUB ColocL,vels

33

' Allows user selection of which color level array to use for plotting a waterfall display.

' CALLed by: ColorLevels
F

FUNCTION ColorSelection%

MaxSelecfion! = 6!

DO

' Defines the total number of color coded

' arrays that have been defined in the

' subroutine Levels.

Message 17, "Which color selection do you want?"

Message 18, "1 through" + STR$(MaxSelection!)

= 1Nptr_(z)
c_ = VAt, S)

LOOP WI-HLE C% > MaxSelectlon! AND C% < 1!

ColorSelection% = VAL(k$)

END FUNCTION

FUNCTION ColorSdection

34

Copy a sequence of records from an EXABYTE file to a DOS file.

CALLed by: ExbPreProce_ieg

_MODS.: 1/10/92; corrected read/write loop to copy all desired records, including the last one.
: 7/D1/92; took out inline code to write records te the DOS file and put code in a subroutine.]

SUB CopyExbToDos

DIM StartRecord AS LONG, StopRecard AS LONG, Skip AS LONG

Active = Exb
Pre._ntFile

Message 17, "Eater the name of the file you want to COPY to"
OpenNewFile FileName$
FileNo% = FREEFILE

IF LEN(FileName$) = 0 THEN
EXIT SUB

ELSE
OPEN F]leName$ FOR BINARY AS #FileNo%

END IF

LOCATE 18, 1: PRINT BlankLine$
Dos.FileName = FileName$
Actlve.l_leName = Exb.FileName
RecordN

DO

LOCATE 18, 1: PRINT Blankl.Jne$

StopRecord = 0

Message 17, "Enter the last record number to copy"

EaterRecord StopReoord
IF StopRecord < StartRecord& THEN

Message 15, "ILLEGAL ENTRY"
SLEEP I

LOCATE 15, I: PRINT BlankLine$
END IF

LOOP WHILE StopRecord < StaaRecord&

DO WHILE Active.Record<= StopRecord+ 1
WriteRecord"DOS", FileNo%

IF IERR% AND 128THEN EXIT DO
ReadRecord

DecodeRecord

Update
LOOP

Active.ByteLoc = ByteLoc
Exb = Active

Dos.TotalRecoMs = LOF(1) / 1024
Dos.TEnd = ClockTime$

SEEK #1_leNo%, 1

FileSourceS = "DOS"
ReadRecord

DecodeRecord

Dos.Record = 2
Dos.TStart = ClockTime$

Dos.ByteLoc = (Dos.Record - 1) * 1024 + 1
FHeSource= "EXB"
Active = Exb

END SUB

SUB CopyExbToDo6

35

SUB DataTyp_
['NEEDS WORK] At present this routine is not used.

Definethetypeofdata_wred ineachdatatypewithina 1024 byterecord.

CALLed by: [not yet used]

SUB DataTypes

DIM DamTyp_(O TO 99)

D,,-Typ_.*(0) = "J-mAI)ER"
Oa,_Typd(t) = "UNPROCESSED RADAR RETURN"

DataType$(2) = "COMPUTER CLOCK 'TICKS' SINCE MIDNIGHT"
DataTypc$(3) = "DIGITIZER TIME DELAY FROM RADAR FIRING"

DamTyl_(4) = "EXTERNAL CLOCK TIME (high precision)"
I_taType$(_ = "AIRCRAFT PITCH ANGLE"

DtmType$(6) = "AIRCRAFT ROLL ANGLE"

I_,-Ty_(7) = "ANTENNA SHAFT 'AN_LE'"

DataType_(8) = "CORRECTED' ANTENNA SHAFT 'ANGLE'"
Da,_Type_(9)= "OBSERVER LATITUDE"

DataType$(10) = "OBSERVER LONGITUDE"

DataTypeS(II) = "INS DATA"
DataType$(12) = ""

DataType,$(13)= ""

DamType$(14) = ""

DalaType$(15)= ""

I_mType$(16) = ""
FORi=lTO16

PRINT DamTypea(O
NEXTi

SLEEP 5

END SUB

36

' Decode the ROWS header record into a 2xn dimensional integer array, where n is the number of types designated
' in the header, column I designates the data type, and column 2 gives the length of the data type in bytes.

' CALLe.d by: [not yet used]

SUB DecodeHeader (H$)

FORj = 0TO 1

FOR k = j + 2 "j TO LEN(H$) - 2 STEP 4
Hesll_ =CVI(M]I_(H$,_, 1) + CHRS(O))
He,d2_ =CVI(CHP_(0)+ MID$(I_,k + 1, 1))
Headev(j 4- 1, (k + 3 - 2 * j) / 4) = Headl% + Head2%

NEXTk

NEXTj

END SUB

SUB DecodeHeader

f

37

Decode ROWS 1024 byte data record into its various variables. The data is contained in NewRecord$ which
is oblained from the subroutine ReadRecord.

CALLed by: AscIIPitchRoll; CopyExbToDos; DosPreProcessing
ExbPreProcessing_ ExbTapeLog; FileN
OpenExlstlngFile; RecordN; StepBackwards
StepForwards; Waterfall

SUB DecodeRecord

' Header

Din.Header = MID$(NewRecord, 1, 50)

' Radar return

Dta.Raclar = MID$(NewRecord, 51,700)

' p.o. internal tick counter time

:bytes1 to50

: bytes 51 to 750

: bytes 751 to 754
Dta.TickTlme= Pc_me$(CVL(MID$(NewRecotd, 751,4)))

' AD trigger : bytes 755 to 756
Dta.TfiggerDelay = ADTriggerDelay&(MIDS(NewRecord, 755, 2))

' p.c. realtime clock time : bytes 757 to 758
Dta.TrueTime = PcClockTime$(MID$(NewRecotd, 757, 3))

' External Wblack box w time used until August 1991

Dta.Acourate'13me = Accurate"llme$(MID$(NewRecoTd, 757, 5))

' aircraft roll from INS : bytes 762 to 763
Dta.Roll = PltchRoll!(MID$(NewRecord, 762, 2))

' aircraft pitch from INS : bytes 764 to 765
Dta.Pltch = PitchRoll!(MID$(NewRecord, 764, 2))

' antenna pointing angle : bytes 767 to 768
Dta.ShaftAngle = RotationAngle!(MID$(NewRecord, 767, 2))

END SUB

' CALLed by: FkSet
w

SUB DfnKy (Kt$)

FORi= 1T010
KEY iFMID$(Kt$, 7 * (i- 1) + 1, 7)

NEXTi
KEY ON

END SUB

' Assign labels to the Function keys.

SUB DecodeRecord

SUB DfnKy

\

38

' Top menu forselectingPreprocessing
' functionsofa DOS file.

'CALLed by: HmMenu
7

SUB DosF_e

DIM KeyTextS00)

RleSouro_ = "DOS"
Active = Des

DO

KeyTex_(1) = "MalnMnn':
KeyText$(3)= 'PmPmc':
KeyTextS(_ = • ..

KeyTex_(7) = • ,.

P-SetKeyTcx_0

CLS

KeyTex_(2)= _OpnFJle _
I(eyTex_(4)= ,

KeyTex_(6) =, .

KeyTextS(8)=.

KeyText$(lO) = "Exit •

Pre_en_le

Message 17, _Selec¢ some son of DOS acdvi_y_,

FkCas_ = FKeyOnly$

SEI.F__.CTCASE Ft'CaseS

CASE "MainMnu" , Return to the main menu

Dos = Acdve
EXIT SUB

CASE "OpnI_le"

OpenExistingFiJe

CASE " ,

Blank

CASE " "

IF FREEFILE > I T/-_N
Blank

ELSE

NoF_Je
END IF

CASE • •

IF FREEFILE > 1 THEN
Blank

ELSE

CopyDosToDos
END IF

CASE "PreProc"

39

SUB DosFile

IFFREEFILE > I THEN

DosPrePtocessing
ELSE

NoFile
END IF

CASE "CisFilc"

Re.scd3osStats

Acliv© -- Dos

CASE "Exit "
END

END SELECT

Dos = Active

LOOP

END SUB

SUB DesF'de (coat.)

40

y

p

' CALI._I by: DosFile
y

SUB DosPrePmcessing

DIM KeyText$(10)

Active = Dos

DO

KeyText$(1) = "DosMenu':
KeyText$(3) = _Rec #N ":
KeyText$(b') = _WtrFall':

KeyText$(7) = ' "-
KeyText$(9) = " _.

FkSet KeyText$ 0

CLS

PresentF]le

Primary menu for selecting preprocessing operations to perform on a DOS file.

KeyText$(2) = " "
KeyText$(4) = " "

KeyTexl$(6) = "DspData"
KeyText$(8) = " "
KeyText$(10) = "Exit "

' put some screen text here to explain some of the FKs

Message 17, "Select some sort of ROWS preprocesslng activity"

= W.eyonlyS

SELECT CASE Fk'Case$

CASE "DosMenu"

CASE " "

CASE "Rec #N "

RecordN
ReadRecord
DecodeRecord

Active.ByteLoc = ByteLoc

CASE "WtrFall"

Waterfall

CASE "DspData"

PlotRadReturn

CASE "Exit "
END

END SELECT

Dos = Active

LOOP UNTIL FkCase$ = _DosMenu"

END SUB

SUB DesPr,Process_

41

' Test if EXB-8200 is ready to accept a new command; wait until previous read or write operation is finished.
s

' CALled by: ExbReset; ExSPACE; MERGE
' WrileRecord

SUB DriveReady

SUB DriveReady

DO

CALLS XREADY(IERR_)
LOOP WHILE IERRg_ <> 0

END SUB

SUB EnterF'ileName (FileName_, ValidName$)

FileName$ = ""
ValidName$ = "Y"
ON ERROR GOTO BadFileName

LOCATE 18, 35

INPUT ; FileName$
FileName$ = UCASE$(F_IeName$)
IF LTRIM$(FIleName$) = "" THEN EXIT SUB
IF ERR <> 0 THEN FileName$ = ""
OPEN V31eName$ FOR BINARY AS #5

SELECT CASE File.SourceS

CASE "DOS"

IF ERR <> 0 THEN

ResetDosSta_
ValidNam_ = "N"

ELSE
ValidROWSFile ValidName$, 5!

IF ValidName$ = "N" THEN ResetDosStats
END IF

CASE "F_XB"

IF ERR <> 0 THEN

ValidName$ = "N"

ELSE

ResetDosStats
END IF

END SELECT

ON ERROR GOTO 0
CLOSE #5

END SUB

42

SUB gate.rReccwd

' Keyboard entry of record number at which processing will begin.
w

' CALI_ by: AsdlPitchRoU; CopyExbToDos; RecordN

SUB EaterRecord (S&)

DO

NewRec& -- 0

LOCATE 18, 37

INPUT ; NewRec&

LOOP WHILE NewRec& <--0

S& = NewRec&

END SUB

SUB Exblqi,

' _ by: F/,_Me_

SUB ExbFile ' Operate on an EXABYTE tape file.

DIM KeyText$(10)

File,SourceS = "EXB"
Active -- Exb

CALLSXSENSE(SenseStams(0),IERR%)
IF (SenseStams(2)AND 64) = 0 THEN

IF Active.'lStart = " w THEN

' This condition only occurs if PREROWS is started from
' the top and the tape in not at LBOT.
ExbReset (ReadDdveld%)
ResetExbStats

Active= Exb
END IF

END IF

DO

KeyTexi$(1) = "MainMnu':
KeyText$(3) = " ":

KeyText$(5) = "LogExb ":
KeyText$(7) = "Merge ":

KeyText$(9) = "lnitize":

KeyText$(2) = "PreProc"

KeyText$(4) = " "

KeyText$(6) = "
KeyText$(8) = " "
KeyText$(10) = "EXIT

FkSet KeyText$ 0

CALLS XSENSE(SenseStatus(0), IERR%)

IF(SenseStatus(2)ANt) 6) _IEN
'Thisconditiononlyoccursifthetapedeckdoorhas

'beenopenedwhilethisprogramisinorbelowthis
'DO I.L)OPlocation.

ResetExbStats
Active = Exb

END IF

CLS

PresentFile

43

Message 17,"Selectsome sortofEXABY']'E activity._

FkCase$ = FKeyOnly$

SELECT CASE FkCase$

CASE "MainMnu"

EXIT SUB

CASE "PreProc"

ExbPreProcessing

CASE " "

CASE"LoOb"

ExbTapeLog

CASE "Merge "

MERGE

CALLS SET]'GT(ReadDriveld%. O)
EXIT SUB

CASE "Initize"

ExbReset (ReadDriveld%)
ResetExbStats
Active = Exb

CASE "EXIT "

END

END SELECT

Exb = Active

LOOP

END SUB

' F1

• Return to first menu

'Produce a log of contiguous sequences
'of records on an ExaByte tape.

'Return to first menu

SUB ExbFUe (coat.)

44

' CALLed by: ExbFile

SUB ExbPreProc_,_sing

DIM KeyText$(10)

DO

KeyText$(1) = "ExbMenu":

KeyText$(3) = "Rec #N ":

KeyText$(5) = "WtrFall':

KeyText$(7) = "PtchRol':

KeyText.$(9) = ' "

FkSet KeyText$ 0
CLS
Active = Exb
PresentHle

KeyText$(2) = "File N "

KeyTexl$(4) = "CpyFile"
KeyTexl$(6) = "DspData"
KeyText$(8) = " "

KeyText$(10) = "Exit "

Message 17, "Select some sort ofROWS prepro,xasing activity"

e.a_ = FKeyOntyS

SELECT CASE FkCase.$

CASE "ExbMenu" ' F1

EXIT SUB

CASE "File N " ' F2

FileN

Active.FileName = RTRIM$('Exabyte file # w) + STR$(Active.FileNo)
ReadRecord

DecodeRecord

Active.ByteLoc= ByleLoc
Active.TSlart$= ClockTime$

CASE "Rec #N " ' F3

RecordN

CASE "CpyFile" ' F4

CopyExbToDos

CASE "WtrFall" ' F5

Waterfall

CASE "DspData" ' F6

PlotRadReturn

CASE "PtchRol" ' F7

AscIIPitehRoll

CASE " "

sub r.d,Pr,Proc-_teg

45

CASE "Exit " ' F10
sub ExbPrtProcesstq (coat.)

END

END SELECT

Exb = Active

updat_

LOOP

END SUB

SUB F_,xbReset

' _2.,cd by: £xbF_e; MERGE

SOB ExbReset (Id%) ' Reset the EXABYTE tape deck.

CONST RecSizc% = 1024
CLS

Message 17, "RESETIING DRIVE'

CALLS SETmT(]d_, 0)

CALLS XSMODE(0, RecSize%, 0, 0, 0, 0, 0, 5, 5, 0, IERR%)

CALLS XRES ET_ERR)

DriveReady

END SUB

46

SenseStatns(2) error code definitions for EXABYTE drive,

' CALLed by: PIo_RadReturm

SUB ExbSsatns (SenseS, SenseCode_)

DIM Sense2(0 TO 15) AS STRING

DIM Sense3 AS LONG

DIM Sensel9(0 TO 7) AS STRING

DIM Sense20(0 TO 7) AS STRING

DIM Sense21(0 TO 3) AS STRING

Sense2$(0) = "No sere data':

Sense2$(2) = "Not ready':

Sense2$(4) = "Hardware error':

Sense2$(6) = "Unit attention':

Sense2$(8) = "Check for blank tape':

Sense2$(10) = "Aborted':

Sense2$(12) = "Not used':

Sense25(14) = "Not used':

Senselg$(0)=

Sensel9$(2)=

Sense195(4)=

Sensel9$(6)=

Sensel9$(7)=

Sense20S(0)=
Sense20$(2) =

Sense20$(4) =

Sense20S(5)=
Sense20$(6)=
Sense20$(7) =

"Beginning of tape':

"Tape motion error':
"Media error':

'SCSI bus parity error"
"Reset since last status"

"Formatter error':

"Media error':

"Error during filemark write"

"Tape is write protected"

"Tape mark error detected'
"Transfer abort error"

"Write splice error, overshoot"

"Wt_te splice error, no gap track s

"Physical end of tape"

Sense21$(0)=

Sense21$(1) =

Sense21$(2)=

CALLS XSENSE(SenseStatns(0), IERRg_)

IF (Sense,Status(0) AND 128) THEN

Sense2$(1) = "Not used"

Sense2$(3) = *Medium error"

Sense2$(5) = "Illegal request"

Sense2$(7) = "Data protect"

Sense2$(9)= " "
Sense2$(ll) = "Aborted command'

Sense2$(13) = "Volume overflow"

Sense2$(15) = "Not used'

Sense195(1) = "Tape not present s

Sensel9$(3) = 'Error counter overflow'

Sense195(_ = "ExaByte buffer error"

Sense20$(1) = "Servo system error"

Sense20$(3) = "Under run error"

IF (SenseStatus(2) AND 1) THEN

SUB ExbStatus

ELSEIF (SenseStatus(2) AND 2) THEN

ELSEIF (SenseStatns(2) AND 4) THEN

ELSEIF(SenseStatus(2)ANDg)THEN

ELSEIF (SenseStatus(2) AND 16) THEN

47

ELSEIF ($enseStatos(2) AND 32) THEN

SUB ExlbStatus{cont.)

ELSEIF (SenseStatas(2) AND 64) THEN

ELSEIF (SenseStatus(2) AND 128) THEN

END IF

IF SenseStatus(19) AND NOT 0 THEN

IF (SenseStat_19) AND 1)THEN

ELSEIF (SenseStates(19) AND 2) THEN

ELSEIF (SenseStatus(19) AND 4) THEN

ELSEIF (SenseStatus(19) AND 8) THEN

ELSEIF (SenseStatus(19) AND 16) THEN

ELSEIF (SenseStatus(19) AND 32) THEN

ELSEIF (SenseStatus(19) AND 64) THEN

ELSEIF (SenseStat_s(19) AND 128) THEN

END IF

END IF

IF (SenseStams(20) AND NOT 0) THEN

IF (SenseStams(20) AND 1) THEN

ELSEIF (SenseStatus(20) AND 2) THEN

48

ELSEIF (SenseStalus(20) AND 4) THEN

SUB ExbStatus (cont.)

ELSEIF (SenseStatus(20) AND 8) THEN

ELSEIF (SenseStatus(20) AND 16) THEN

ELSEIF (SenseStatas(20)AND 32)THEN

ELSEIF (SenseStatus(20) AND 64) THEN

ELSEIF (SenseStatus(20) AND 128) THEN

END IF

END IF

IF (SenseStates(21) AND NOT 0) THEN

IF (SenseStams(21) AND 1) THEN

ELSEIF (SenseStatus(21) AND 2) THEN

ELSEIF (SenseStatus(21) AND 4) THEN

END IF

END IF

ELSE

Message 17, "ExaByte sense data invalid for last Call to ExaByte"

END IF

END SUB

49

' Produce a log of an EXABYTE tape. The log will indicate all time gaps within each tape file, the total number
' of records in each file, and the starting and stopping time of each file.

' CAL/_ b3:
w

SUB ExbTapeLog

ExbFile

DIM NewName AS STRING * 1

DIM Begi_rdTime AS STRING * 11, EndingRecordTime AS STRING * 11

DIM BeginRecordNumber AS LONG

DIM "rime'licks(0 TO 1) AS LONG

CONST Recordlncrement% = 100
CONST RecordsPerSec = 100

CONST RecsPerTick% = RecordsPerSec / "I_cksPerSec

CONST TestT'tme = (1! * Recordlncrement% / RecsPerTick%) + RecsPefIick%

NewName$ = "N"

DO
CLOSE #3

Message 17, "Enter the NAME of the DOS file for the log output."
LOCATE 18, 35

INPUT ; FileLog$
IF FileLog$ = "" THEN EXIT SUB

OPEN FileLog$ FOR APPEND AS #3

IF LOF(3) > 0 THEN

Message 17, "WARNING, A FILE OF THE SAME NAME ALREADY EXIS"IS."
Message 18, "Do you want to use a different filename? (Y/N)"
LOCATE 19, 35

NewName$ = UCASE$(INPLr]$(1))

ENDIF

LOOP WHILE NewName$ = "Y"

Rewind
CLS

Psl$ = "\ \ •
Ps2$ = "###### "

'Print using format string for disk outpuL
'Print gsing format string for screen output.

Headerl$ = "Start "lime Stop Time Start Stop Number"

Headef2$ = " pc tick pc tick Rec # Rec # Recs"

DO ' Loop on EOF until EOD

NonRecords% = 0
Active.Record = 1

Active.ByteLoc = 1

BeginRecordNumber& = 1
ReadRccord

DecodeRecord

BeginRecord'Dme = ClockTime$

Active.'IStart = BeginRecord'I3me

PRINT #3,

PRINT #3, SPACES(20) + "FILENUMBER: "; Active.FileNo: PRINT

PRINT SPACES(30) + 'FILE NUMBER: ";Active.FileNo: PRINT

SUB Ed, TnpeLe_

5O

PRINT #3, Headerl$: PRINT//3, Header2$

PRINT SPACES(10) + Headerl$: PRINT SPACES(10) + Header2$
SaveLine = CSRLIN

SaveCol = POS(0)

SUB ExbTapeLog (coat.)

DO ' Loop on file until F.OF

Rex_rdsMoved% : Recordlncrement% - 1

DO ' Check for time gap within record incTement

Tmae_cks&(0) = CVI._MID$(NewRecord, 751, 4))

CALLS XSPACE(RecordsMoved%, IERR%)
CALLS XSENSE(SenseStatus(0), IERR%)
Active.Record -- Active.Record + RecordsMoved%

AtF,OF% = SenseStatus(2) AND 128
AtEOM% = SenseStates(2) AND 64
AtEOD% = ScoseS*atm(2) AND 8

IF AtEOF% OR AtF_.OM% OR AtEOD% THEN ' EOF test.
Active.Record = Active.Record - SenseStatus(6)
EXIT DO

END IF

ReadRecord
DecodeRecoTd

COLOR 7, 0: LOCATE 24, 15

PRINT "PRESENT RECORD #: ";
COLOR 4, 7: PRINT Active.Record - 1;
COLOR 7, 0: PRINT " TIME: ";
COLOR 4, 7: PRINT ' " + ClockTime$;

COLOR 7, 0

TimeTicks&(1) = CVL(MID$(NewRecord, 751, 4))

DellaT& = TimeTicLs&(1) - _me'Iicks&(0)

LOOP WHILE (DeltaT& < Test'Hme)

EndingRecordTime = PcTime$(Time'l'icLs&(0))
ContinuousRecords = Active.Record - BeginRecordNumber& - RecordsMoved%

PRINT #3, USING 1%15; BeginRecordTime$; EndingRecordTime$;
PRINT #3, USING "####_ ";BeginRecordNumber&; Active.Record - RecordsMoved% - 1; ContinuousRecords

LOCATE SaveLine, SaveCol
PRINT SPACES(10);

PRINT USING 1%15; BeginRecord'l_me$; EndingRecord_me$;

PRINT USING 1%25; BeginRecordNumber&; Active.Record - RecordsMoved% - 1; ContlnuousRecords

BeginRecord'Iime$ = Pc'llme$(TimeTicks&(1))
BeginRecordNumber& = Active.Record - 1

IF (AtEOF% + AtEOM% + AtEOD%) > 0 THEN EXIT DO

LOOP

Active.TEnd = PcTime$(Time'l"icks&(1)) 'ClockTime$

PRINT #3,SPACES(10); "End of file."

51

PRINT #3, "Start Time: "; Active.TStart; " Stop time: "; Active.TEnd
PRINT #3, vrotal Records:"; Active.Record

PRINT SPACES(10); "End of file."

PRINT "Start Time: "; Active.TStart; " Stop time: ,; Active.TEnd
PRINT "Total Records:'; Active.Record

CALLS XSPACE(1, IERR%)
Actlve.FileNo = Active.FileNo + 1

LOOP WHILE (IERR_, AND 8!) = 0

PRINT #3, "END OF DATA."

CLOSE #3

Actlve.FileNo = Acfive.FileNo - 1
Active.FileName = RTRIM$('Exabyte file # ") + STR$(Acdve.FileNo)
Actlve.ByteLoc = ByteLoc
Active.TEnd = ClockTime$

Acfive.TotalRecords = Active.Record

PRINT : PRINT "PRESS ANY KEY TO CONTINUE': Waits = INPI/I$(1)

END SUB

SUB FabTapeLo8 (coat.)

52

' CA/._d by: F.xbPreProcess/q

SUB F31eN

DO
CLS
PresentFile

Message 17, "Enter the number of the file you want to process."
LOCATE 18, 35
INPUT ; NewFileNo%
IF NewFileNo% = 0 THEN EXIT SUB

LOOP WHILE NewFileNo% < 0

SkipFile% = NewFileNo% -Active.FlleNo

SELECT CASE NewFileNo%
CASE IS = Active.FileNo

CASE IS > Active.FileNo

DO WHILE SkipFile% > 0

ReadRecord ' Create sense data to test for EOD

IF IERR% AND 8 THEN ' If FOOD.

TextS = "EOD reached; tape set to beginning of last file."

Message 15, TextS
CALLS XSKIPF(-2, IERR%)
CALLSXSKIPFO,IERR_)
EXIT DO

ELSEIF (IERR% AND 128) <> 0 THEN
CALLSXSKIPF(-1,IERR%)

ELSE

IF Active.FileNo = 0 THEN SkipFile% = NewFileNo% - 1

CALLS XSKIPF(1, IERR%)
END IF

SkipFile% = SkipFile% - 1!

LOOP

CASE IS < Active.FileNo

IFNewFileNo% = 1 THEN

CALLS XREWND(IERR%)
ELSE

CALLS XSKIPF(SkipFile% - 1, IERR%)
CALLS XSKIPF(1, IERR%)

END IF

SkipFile% = 0

END SELECT

ResetExbStats
Active = Exb

DecodeRecord
Active.TStart = Clock'rime$

Active.FileNo = NewFUeNo% - SkipFile%

END SUB

SUB FihN

53

' CALLed by: OpenExistingFi2e

SUB FileOpen (CIosel$)

Closel$ = "Y"

IF FREEFILE <> 1 THEN

CLS

Message 17, RTRIM$(Actlve.FileName) + ' is presently open'
Message 19, "Do you want to open a different file (Y/N)?"

DO
Closel$ = UCASE$(INPUT$(1))

LOOP _ Closel$ <> "Y" AND Ciosel$ <> "N"

IF Closel$ ffi"Y" THEN
ResetDosStats
Active = Dos

ENDW

ENDW

END SUB

SUB F]leOpm

54

' _ _: MA/N

SUB FirstMene ' **** Initial program menu.

DIM KeyText$(lO)

DO

KeyText$(1) = " ""

KeyTexl$O) = "EXBFILE":
KeyTexl$(5) = " w:

KeyTexl$(7) = " ":
KeyText$(9) = "VERSION":

KeyTexl$(2) = "DOSFILE"
KeyTexl$(4) = " "
KeyTexl$(6) = "

KeyTex*$(8) = " "
KeyText$(10) = "EXIT "

FL_t K_Text$ 0

FilcSo_czS = " "
ResetAcfiveStats
Resetl_a

CLS

PresentF]le

LOCATE 14, 18

PRINT "This program is used m perform preprocessing and"
LOCATE 15, 18

PRINT *low level processing on ROWS data files, w
LOCATE 20, 20
PRINT "PRESS THE FUNCTION KEY INDICATING THE SOURCE"

LOCATE 21, 20
PRINT "OF THE ROWS DATA FILE YOU WANT TO PROCESS."

FkCase$ = FI_yOnlyS

SELECT CASE FkCase.$

CASE "DOSFILE' ' F2

DosFile

CASE "EXBFILE" ' IB

ExbFile

CASE "VERSION" ' F9

Version

CASE "EXIT " 'FI0

END

END SELECT

LOOP

END SUB

SUB Flrr,tMmu

55

' CALLedl_:
J

Do_F_e;

EzbPreProcessin#;

FUNCTION FKeyOuly$

DO

kS_- #n

Chars = ""

DO
Chars = INKEY$

LOOP UNTIL Chars <> ""

DO UNTIL LEN(Char$) = 0
kS = kS + Chars
Chars = INKEY$

LOOP

kS = kS + Chars

IF LEN(k$) <> 7 THEN BEEP

LOOP UNTIL LEN(k$) = 7

FKeyOnly$ = kS

END FUNCTION

DatPreProcessin&; ExbFile
Fh-stMenu

FUNCTION FKeyOaly$

0* 4' @4' • @4, 4' @@4¢ 4'04, @4, 4, 4,4, @ • 4' @ *Or O* • tO @**@ 0## @ * t* @ * (' 4,4' 41 t* @ @* • @6 @@ * * 4,* * ** */,& 4, */, _I, t@ t @4, _, 0@ ** • * t * * *4, 4, @4' @ ,I'* @ $# # 4, i¢ * 0* * O* *

SUB FkSet

' CAZ_d by: DosFile; Dof,PreProcesxing; ExbFUe;
ExbPreProcessing; FiraMenu

S_FkSet_

Kt$ = .w

FORi = 1 TO I0

Kt$ = Kt$ + Keys$(1)
NEXT

DfnKy Kt$

E_S_

56

' CALLtd by: ParameterDisplay

SUB GPSDisplay (LatLong$)

RowOfISct% = 18
ColOffSet% = 45

COLOR 3

LOCATE RowOflSet%, ColOffSet% - 1
PRINT CI-IR$(201);STRINGS(25, CHR$(205));CHR$(187)
FOR i= 0TO 4

.LOCATE RowOf[Set% + i+ I,ColOflSet%- I:PRINT CHR$(186)

LOCATE RowOitSet% + i + 1, ColOffSet% + 25: PRINT CHR$(i86)
NEXT
LOCATE RowOft'Set% + 6, ColOffSet% - 1

PRINT CHR$(200); STRINGS(25, CHR$(205)); CHR$(188)
COLOR 7: LOCATE RowOWSet% + 1, ColOf[Set% + 4

PRINT "GPS location at';
LDCATE RowOffSet% + 2, ColOftSet% + 8
PRINT ClockTlme$

COLOR 4: LOCATE RowOft'Set% 4- 1, ColOffSet% + 7

LOCATE RowOflSet + 4, ColOflSet% + 3
COLOR 10

PRINT "LATI'IXYDE : ";
LOCATE RowOffSet + 5, ColOffSet% + 3
PRINT "LONGITUDE : ";

PresentLat@ = CVL(MID$(LatLong$, 1, 4)) / 10000

PresentLong@ = CVL(MID$(LatLong$, 5, 4)) / 10000

IF PresentLong# o -99_9.9999# THEN
LOCATE RowOffSet + 5, ColOflSet% + 15

PRINT USING "+##.####'; PresentLong#
END IF
IF PresentLat# <> -99999.9999# THEN

LOCATE RowOft'Set + 4, ColOffSet% + 15

PRINT USING "+##.####'; PresentLat#
END IF

COLOR 15

END SUB

SUB GPSDisplay

57

Strips latitude and longitude from GI_ records, converts them to long integer string variables.

'CALLed by: MergeGPS

FUNCTION GPSLatLong$ (LatLong$)

Start%= 1
LatPos% = I

DO UNTIL Start% = 3 ' Skip first two comma delimited fields.

LatPos% = INSTl_LatPos%, LatLong$, w,_) + 1
Start% = Start% + 1

LOOP

Lat# = VAL(MIDS(LatLong$, LatPos%, 2)) + (VAL(MIDS(LatLong$, LatPos% + 2, 7))) / 60
Lag# = -1 * (VAL(MID$(LatLong$, LatPos% + 12, 3)) + (VAL(MID$(LatLong$, LatPos% + 15, 7))) / 60!)
Lat& = LatO * 10 " 4

Leg& = Lag# * 10 ^ 4
GPSLatLong$ = MK]_(Lat&) + MKL$(Lag&)

END FUNCTION

FUNCTION GPSLatLong$

58

' CALLed _:
y

SUB Help2

PlotRadReturn

SUB Hdp2

LOCATE 27, 1: COLOR 12

PRINT "[ALT-F] Continuous forward. IF] forward 1 record."; ""
IF FileSourcoS = "DOS" THEN

LOCATE 28, 1

PRINT "[ALT-B] Continuous backward. [13] backward 1 record."
ENDIF
PRINT "ESC - exiL'

COLOR 15

END SUB

SUB IDLE

' _ by: Ck_kExbStat_; MERGE; Version

SUB IDLE

Message 22, "SYSTEM SLEEPING."
Message 23, "HIT ANY KEY TO CONTINUE."
DO: its = 1NKEYS: LOOP WHILE kS <> ""

DO: kS = INKEYS: LOOP WHILE kS = ""
END SUB

** *****e * ** * ** * o, **, * o* * ** **o • 4* * *o * * • • 4* • e* * * * * ** • ** * ** * 8. • 0. * o, * ** * * * * ** * o, * *e, ** * ** * o, *** * ** * • ** ** * o* * o o,

SUB]_u

' Reads the W gains and corresponding times of gmn changesand converts them into long
' in_g_ in a two dimensionalamy.

' CALLED by: INFOFILE
I

SUB IFGains (FileNo%, TTo&, GT&0)

DIM IfOain(lO0) AS STRING

NumberGains% = 0

DO ' Read gain table. 100 gain changes max.
NumberGains% = NumberGaJ_% + 1

LINE INPUT #FileNo%, If&ain(NumbeK3ains%)
IF NumberGaies% > I00 THEN

CLS

PRINT "Too many IF gain changes, input truncated."
EXIT DO

END IF

LOOP UNTIL EOF(FileNo%)

' Convert gain string to integer gain and time of gain change.

FOR j = 1 TO NumberGains%
Gains = LTRIMS(MID$(IfGainG), 10))
"HmeGain$ = RTRIM$(LTRIM$(MID$(IfGain(j), 1, 9)))

GT&(,j,1) = VAL(LEFP$(Gains, INSTR(Galns," ")- t))

' Strip time from GainS and convert to integer seconds since midnight of airplane takeoff.
GT&(j, 2) = lntegerTIME&(TimeOainS)

IF GT&(j, 2) < TTo& THEN GT&fj, 2) = GT&(j, 2) + 86400
NEXT

END SUB

59

' Read the information f'de from disk and reformat the data.

' CALLed by: MERGE
y

SUB INFOFILE (MN$, MD$, MT&, GaiaTime& 0' IFN$, GFN$, ITL!)

DO
ON ERROR GOTO BadFileName

MergelnfoFile$ = "
Valid$ = "Y"

LOCATE 18, 1: PRINT BlankLine$

Message 15, "Enter the NAME of the MERGE information file"
LOCATE 18, 35

INPUT ; MergelnfoFile$
MergelnfoFile$ -- UCASE$(MergeInfoFile$)
IF LTRIM$(MergelnfoFile$) = ""THEN

MN$ = "': MD$ = "': biT& = 0: IFN$ = "': GFN$ = "': ITL! = 0
EXIT SUB

END IF
FileNo% : 2 + FREEFILE

OPEN MergelnfoFile$ FOR Ih_UT AS #FileNo%
IF ERR <> 0 THEN

MergelnfoFile$ = ""
Valid$ = "N'

ENDIF

LOOP WHILE Valid$ = "N"

ON ERROR GOTO 0

LINE INPUT #FileNo%. MN$
LINE INPUT #FileNo%, MD$
LINE INPUT #FileNo%. M_
LINE INPUT #FileNo%, IFN$

LINE IN'PUT_ileNo%, GFN$
LINE INPUT #FileNo%,ITL$

Mission name
Mission date

Mission takeoff time (LrI'C)
INS data file name
GPS data file name

INS time lag wrt ROWS data

' Convert mission starting time from string to long integer.
MT& = IntegerTIME&(RTRIM$(LTRIM$(MID$(M'_, 1, I0))))

CALL IFGains(FileNo%, NIT&, Gain'Iime&O)

' Read IF gain table; save in 2-D array with first column

' containing the gains and the second column the times.

CLOSE #FileNo%

IFlq$ = MID$(IFN$, 1, INSTI_(IF'N$, ' ")- 1)

GFN$ = MIDS(GFN$, 1, INSTR(GFN$, • ")- 1)
rrLy= VAL(rr_)

END SUB

SUB INFOFILE

6O

, _by: IFGa_; INFOFILE; MERGE

FUNCTION l,,te{{,rTlMF.,&

FUNCTION IntegerTIME&(T$)

_& =VAt_TRIMS(MmS(TS,I,n_STR('rS,":')-1)))
Mi_. = VAL(MID$('I_, INSTR(T_,":')+ I,2))
Sec& = 0

L% = I.J_N_)
L% > 6 THEN

Sec& = VAL(MID$("I3, L% - I))
END IF

IntegerTIME& = 3600 • Hr& + 60 • Min& + Sec&

END FUNCTION

FUIqCTION KeyCode%

' General keyboard scan eode interpreter. For ALT keys add 1000.

' _ by: PIo_adReturn; Waterfall

FUNCTION KeyCode_ (I_)
IF LEN(k$) = 1 THEN

KeyCode% = ASC(UCASE$(k$))

msEiF U_N(_)=2Tm_N
KeyCode% = ASC(RIGH'_(k$, 19 + 1000

END IF

END FUNCTION

' [1117/91]

• * •••• • •• *• * •• • ** ** * * ** * ** ** O•* •• •4 • • • • *4 * ** * ** * ** * • ** * * * •• • • • • * • * •* * ** • ** • •* * ** * ** * *• • ** • ** • * • * • • * •* * *• * ** *

SUB Keystroke

' CALLed by: StepBackwards

SUB Keystroke(C%)

I_ = INKEY$

IF LEN(k$) = ITHEN
CU% = ASC(UCASP_(kS))
IF C2% = 70 OR C2% = 66 OR C2% = 27 THEN

C% = C2%

END IF

ELSEIF LEN(kS) = 2 THEN

C2% = ASC0UOH'rS(kS, I))
IFC2% = 48 OR C2% = 33 THEN

C% = C2%

END IF
END IF

'ALT keystroke

END SUB

61

Set the color levels for the waterfall display.

' CALLed by: CoiorLcvels
i

SUB Levels (LevelChoice%)

SE_ CASE LevelChoice%

CASE 1!

Level%(0) = 8: Level%(1) = 14: Level%(2) = 16: Level%(3) = 18
Levelg_(4) = 21: Levelg_5) = 24: Level%(6) -- 26: Level%(7) = 29
Level%(8) = 32: Level%(9) = 37: Level%(10) = 42: Level%(11) = 48
Levelg_(12) = 56: Levelgf_(13) = 63: Levelg_14) = 70

CASE 2!

Level%(0) -- 9: Level%(1) = 11: Level%(2) = 13: Level%(3) = 15
Level_f_4) = 17: Level%(5) = 19: Level%(6) = 21: Level%(7) = 23
Levelgt(8) = 25: Levelg{>(9) = 27: Levelg_10) = 29: Level%(11) = 31

Level%(12) = 33: Level%(13) - 35: Level%(14) = 50

CASE 3!

Level%(0) -- 10: Level%(1) -- 11: Level%(2) -- 12: Level%(3) = 13

Levelg_(4) = 14: Level%(5) = 15: Levelg{_6) -- 16: Level%(7")= 17
Levelg_8) = 18: Levelg_9) -- 20: Level9_(10) = 22: Level%(ll) = 24
Levelg_12) = 26: Level%(13) = 40: Level%(14) = 60

CASE 4!

Levelg_0) = 10:. Level%(1) = 14: Level%(2) -- 16: Level%(3) = 18
Level%(4) = 20: Level%(5) = 22: Level%(6) = 24: Level%(7) = 26
Level%(g) = 28: Level%(9) = 30: Level%(10) -- 33: Level%(ll) = 35

LevelO(_12) = 45: Level%(13) = 55: Level%(14) = 80

CASE 5!

Levelg_(0) = 15: Level%(1) = 30: Level%(2) = 50: Level%(3) = 60

Level%(4) = 70: Level%(5) ---80: Level%(6) = 85: Level%(7) = 90
Levelg_8) = 95: Level%(9) = 100: Level%(10) = 110: Level%(ll) = 120
Levelg{_12) = 130: Level%(13) = 140: Level%(14) = 220

CASE 6!

Level%(0) = 10: Level%(1) = 12: Levelg_2) -- 14: Level%(3) = 16

Level%(4) = 18: Level%(5) = 20: Level°lo(6) = 23: Level%(7) = 27
Levelg_8) = 30: Levelgf>(9) = 35: Level_o(10) = 40: Level%(ll) = 45

Level°lo(12) = 50: Level%(13) = 60: Level%(14) = 75

END SELECT

END SUB

SUB_v_

62

' Merge GPS, INS, and IF gain change data located in pc files with an EXABYTE ROWS file and save the merged

' file on a second EXABYTE. Certain errors in the raw data relating to the pc real-time clock and the antenna

' shaft angle enceder are adjusted.

' CALLedlq:
y

SUB MERGE

ExbFile

DIM GalnTime(100, 2) AS LONG

Sta.qTmae = TIMER

INFOFILE MissionName$, MissionDate$, Misaion'llme&, OainTime&0, InsFileName$, GpsFileName$, Ins_meLag!

IF lnsFileName$ <> "" THEN

InsFile% = FREEFILE

OPEN Insl_leName$ FOR BINARY AS #1usFile%

InsData$ = I]qPUT$(44, #1nsFile%)

InsTime& = CVL(MID$0nsData$, I, 4)) / "I]cksPerSec + VAL(lnsTimeLag$)

ELSE

Ins"l'ime&= -I

ENDIF

IF C_,-psFileName$ <> "" THEN

GpsFile% = FREEFILE

OPEN G_ileName$ FOR INPUT AS #GpsFile%

LINE INPUT #GpsFUe%, GpsData$

GpsTime& = "l]meGPS&(GpsData$)
EI_SE

GpsTime& = -1
END IF

CALL STARTINGTIME(StaKI]me&, ML_ionTime&, Ins'nine&, Gps'I_me&)

IF lnsFileName$ <> "" THEN SEEK #1nsFile%, 1

IF GpsFileName$ <> "" THEN SEEK #GpsFile%, 1

MergeHeader$ = NewHEADER$

'Construct the new header for the merge file.

'Construct string for mission name and date information.

NewNameDate$ = NameDATES(MissionName$, MissionDate_)

FileSource$ = "EXB"

E.xbReset (WriteDriveld%)

CALLS SETrGT(ReadDdveld%, 0)

CLS

PresentI_le

Rows_me2& = 0

' Step through ROWS file until start of first full second.
DO

Rows'I3mel& = RowsTime2&

ReadRecord

Rows'llme$ = PeCIockTime$(MID$(NewReeord, 757, 3))

IF RowsTime.$ = "FF:FF:FF" THEN

Rows1_mc$ = RowsTime3$

MID$(NewRecord, 757, 3) = RowsTlme$

SUB MERGE

63

END IF
Rows'llme3$ = Rows_me$

Rows'lime2& = IntegerTIME&(RowsTime$)

' Assume mission starting time is always entered as
' earlier than the time of the first radar waveform.

IF RowsTime2& < Start'lime& THEN RowsTime2& = RowsTime2& + 86400
LOOP _ RowsTime2& = RowsTimel& + 1

SUB MERGE (coat.)

Dt%=O
RowsT2# = RowsT_me2&

InsTime# = Ins_me&
Gain% = 1

ENDS=" "

RecordsMerged& = 0

DO

' Gain array index

' Primary loop to merge successive ROWS records with the ancillary data.

MergeiNS NewReoord, MergeHeader$, Start'I_me&, RowsT2#, las_me#, lasFile%, IasTimeLag$
MergeGPS NewRecord, Start'Time&, RowsTimel&, Rows'lime2&, Opsl"ime&, GpsFile%

' Merge IF gain with ROWS record.
DO WHILE Gain'llme&(Galn%+ I,2)o 0 AND Rows'Hme2& >= GainTime&(Gain% + I,2)

Gain% = Gain% + 1

LOOP

MID$(NewRecord, 766,1)--MKI$(Gain'13me&(Gain%,I))

MID$(NewRecord, IfD7, 18) = NewNameDate$

MID$(NewRecord, 1, 50) = MergeHeader$

M]D$(NewRecord, 767,2)= ShaftAngle$

' Put mission name and date in ROWS record.

' Put new modified header in ROWS record.

' Correct the antenna shaft angle and put corrected value in the ROWS record.

CALLS SETrGT(WriteDriveld%, 0)

DriveReady
WrlteRecord "EXB', -1

RecordsMerged& = RecordsMerged& + 1
LOCATE 15, 30

PRINT "RECORDS MERGED: "; RecordsMerged&

' Write the merged record to the target tape.

' If previous record had no INS data (header ID was -9999) then reset INS header I'Dbytes to 1011.

IF MID$(MergeHeader$, 45, 2) = NoData$ THEN
M]D$(MergeHeader$, 45, 2) = MK]$(1011)

END IF

Rows'l_mel& = RowsTime2&

CAI.J__ SETTGT(ReadDriveld%, (3)

DrlveReady
ReadRecord

CALLS XSENSE(SenseStatus%(0), IERR%)

' Read next record from the source tape.

IF SenseStatus(2)= 0 THEN

64

Rows'I3mes= PcClockTime$(MID$(NewRecord,757,3))

IFRowsTime$ = "FF:FF:FF_ THEN

Rows'llmeS= RowsTime3$

MID$(NewRecord, 757,3)= Rows'rimes
END IF

Rows"I]me3$ = Rows'TimeS

Rows"l]me2& = IntegerTIMF.&(RowsTime$)
IF Row,sTime2& < Starf13me& THEN RowsTime2& = Rows"lime2& + 86400

SELECT CASE Rows"13me2& - Rows'lime1&

CASE IS = 0
RowsT2# = Rows"13me2& + 131%/ 100
Dt% = Dr% + 1

CASE IS = 1

Rows']'2# = Rows"Hme2&
Dr% - 1

END SELECT

'Assumes I00 pulses/sec

ELSEIF (SenseStatus(2) AND 128) OR (SenseStatus(2) AND 8) THEN

' EOF or "blank" bytes encountered during last read.

LOCATE 11, 22

PRINT "Writing last record."
CALLS SETIGT(WHteDriveld%, 0)
WriteRecord "EXB", -1
LOCATE 19, 30

PRINT "Wrhing EOF to tape,"
CALLS XEOF(IERR%)

LOCATE 20, 31
PRINT "END OF TAPE COPY."

ENDS = "END"

ELSE ' Some type oferror has occured.

LOCATE 12, 25
PRINT "SYSTEM ERROR: "; SenseStahJs(2); " HAS OCCURED."
ENDS = 'END"

END IF

LOOP WHILE ENDS <> "END"

El = TIMER - Staffrime

Hr = HX(Et / 3600 D

Min = FIX((EI - 3600[* FIX(El / 3600!)) / 60!)

LOCATE 17, 25

PRINT "Tape copy lime is ";

PRINT USING "##_:'; Hr; Min;
PRINT USING "##"; FIX(El - 3600! * Hr - 60! * Min)

CLOSE

IDLE

END SUB

SSUB MERGE (cont.)

65

' Merge GPS data on DOS disk file with ROWS data in an EXABYTE file.

' CALLed by: MERGE
9

SUB MergeGPS (MRS, ST&, RTI&, RT2&, Gps'I]me&,GpsFile%)

'Read GPS dataand synchronizetimewithROWS

DO WHILE GpsTime& < RT2&

IFEOF(GpsFile%) THEN EXIT DO

LINE INPUT #GpsFile%, GpsData$
GpsTime& -- "13meGPS&(GpsData$)
IF Gps'13me& < ST& THEN G_'I]me& = GpsTime& + 86400

LOOP

SUB MergeGPS

MID$(MR$, 771,8) = NoDataLong$ + NoDataLong$

IF GpsTime& = (RT2& -RTI&) * RT2& THEN

MID$(MR$, 771, 8) = GPSLatLong_GI_Data$)
ENDIF

' Put GPS latitude and longitude data into ROWS record.

END SOB

• ** ** * i_* _****** 00 • _0 • *_ * O* 6 ** *0.# O0 *OOe gO * lJ* ib Q ib • O_ • 00 *O * * OI ib * it * IbO _ *_ • O _O 04 e e**** * ** * .0 *0 ** * O* O* ii, o_ * *e *******

SUB MergelNS

' Merge 44 bytes of "INS" data with a ROWS record. If the time difference between the INS data and the ROWS
' data is greater than two pc "ticks" then a "NO DATA" (-9999) is entered in the ROWS record.
y

' CALLed by: MERGE

SUB MergelNS (MRS, MILS, ST&, RT2#, InsTime#, InsFile%, InTL$)

STATIC InsData AS STRING

' Read INS data and synchronize time with ROWS time.

DO WHILE (Ins'l_me# < RT2# - 2 / _cksPerSec)

IF EOF(InsFile%) THEN EXIT DO

InsData$ = IN-PUTS(44, #lnsFile%)

"ticks = CVL(MID$(InsData$, 1, 4))
InsTime# = Ticks / TicksPerSec + VAL(InTL$)

' Past midnight.'?
IF Ins'rime# < ST& THEN InsTime# = Ins'Hme# + 86400!

LOOP

MID$(MR$, 779,44) = InsData$

IF ABS(InsTime#-RT2#) > 2 /TicksPerSecTHEN

MID$(MH$, 45,4)= NoData$ + MKI$(80)

MID$(MR$, 779,80) = STRINGS(80, 0)
END IF

' Put INS data in present ROWS record.

END SUB

66

' Print a message to the screen.

' C_ALIa_ by: ASdlPitchRoll;

CopyExb ToDo¢;

ExbFil¢;
ExbStatus

FatOptm;
NoFk;

ReeordN;

Versio_

SUB Message (Row_, NoteS)

LOCATE Row%, 1
PRINT BlankLine$

LOCATE Row%, 42 -LEN(Note$)/2
COLOR 4, 7

PRINT NoteS;
COLOR 7, 0

END SUB

Blagk; CoiorSeleetio_

DocFge; DosPreProcessing;

ExbPreProcessing; ExbReset

Exb Tat_Log ; Fl_

IDLE; INFOFILE;
Ope ttEx isting File ; OpenN tw Fil e;

R ewiad; Val idR OWS Fil#;

Waterfmq

' Find the minimum and maximum elements and element indicies of a one dimensional army of size N.

' CALLed by: StartingTim_

SUB MINMAX (A&0, N. Amin&, Imin,Amax&, Imax)

REDIMA(N)

Amzx& = A&(1): Imax = 1: Amia& = A&(1): lmin = 1
i=l

DO
i=i+l

W A_(i) > At(i- I)THEN

Am_ --A_(i)
Imax = i

ELSE

Amin&=A_(i)
Imin = i

ENDIF
LOOP UNTIL i = N

END SUB

SUB Message

SUB MINMAX

67

' .Insert mission name and date in merged file.

' CAl_d by: MERGE
y

FUNCTION NameDATE$ (N$,D$)

AS = SPACES(10)

B$ = SPACES(8)

MID$(A$, I,10)= RTRIMS(MID$(N$, I))

= RTRIMS(MID$(D$, t,S))

MID$(B$, I,8)= "00_0"+ RIGHT$(B$, 4)

IFLEN(B$)=S"rtmN
MIDSt'm,i, s) =m

ELSEIFLEN(B$)=6THEN
MID$('B$,I,I)= MID$(B$, 1,I)

MID$(B$, I,I)= MID$(B$, 3,I)

ELSEIF LEN(B$) = 7 THEN

MID$(B$, 1- INSTR(B$, "\'),3) = MID$(BS, I,3)
ELSE

MIDS(BS, I,8) = "-9999999"
END IF

NameDATE$ = AS + D$

END FUNCTION

' Insert the mission name (10 chamcmr field)

' Insert the mission date as --\-A--.

'No minion date

FUNCTION NameDATE$

68

' Create a header for the merged records. Header types and lengths are those used during the ERS-1

' enderflight mission to Newfoundland during November, 1991.
P

' CALLed by: MERGE

FUNCTION New_ER$

FUNCTION NewHEADER$

DIM NewHeaderString AS STRING • HeaderLength

DIM Head(2, (I-leaderLength% - 2) / 4) AS INTEGER

Head%(l, I) = 0: Head%(2, I) = 50

Head%(l, 2) = 1: Head%(2, 2) = 700

Head%(l, 3) = 2: Head%(2, 3) = 4

Head%(l, 4) = 3: Head%(2, 4) = 2

Head%(1, 5) = 10020: Head%(2, 5) = 5

Head%(1, 6) = 6: Head%(2, 6) = 2

Head%(l, 7) = 5: Head%(2, 7) = 2

Head%(1, 8) = 1001: Head%(2, 8) = 1

Head%(l, 9) = 100(]8: Head%(2, 9) = 2

Head%(l, 10) = 1009: Head%(2, I0) = 4

Head%(1, ll) -- 1010: Head%(2, 11) = 4

Head%(1, 12) = 1011: Head%(2, 12) = g0

Header

Radar waveform

pc "tick" time

"main bang" to first radar point time delay

pc real-time dock with FF:FF:FF corrected

Aircraft toll angle

Aircraft pitch angle

IFGain

"corrected" antenna shaft angle

GPS Latitude

GPS L_ngilude

INS data string

FORj = 0TO 1

FOR k = j + 2 ^ j TO HeaderLength - 2 STEP 4

MID$(NewHeaderString$, k, 2) = MlOS(Head%(j + 1, (k + 3 - 2 * j) / 4))

NEXTk

N_XTj

'Teminate header with -1 (ie., hex FFFF)

MID$(NewHeaderString$, HeaderLength - 1, 2) = MKI$(-1)

NewHEADER = NewHeaderString$

END FUNCTION

• • • •• • •• • •4 • • • • •• • •• *4 * • • * • •I • •• • 44 * 4. • •4 * 444 •• 0 • it i •* • 4• i 44 O •g • •• * • • • •• • • * • • • • •• • •• • • * • • * * •• • •4 • •41 •4 • • • •• • •

SUB NoF'de

' CALLed by: DosFile

SUB NoFile

Message 17, " NO OPEN FILE."

Message 18, "Use Function Key 2 to open a file."

Message 20, "PRESS ANY KEY TO CONTINUE."

x$ = "": DO UNTIL x$ <> "': x$ = INPU'I$(1): LOOP

END SUB

69

' CALIAd Iq: DosFile

SUB OpenE_4stmsFde

SUB OpenExlstlngFile

FileOpen Closel$
IF Closel$ = 'N' THEN EXIT SUB

DO

I£)CATE 18, 1: PRINT BlankLine$

Message 17, 'Enter the NAME of the file you want to OPEN"

EnterFileName Active.HleName, Valid$

LOOP WHILE Valid$ = "N"

OPEN RTRIM$(Active.FileName) FOR BINARY AS #I

SEEK #I, LOF(1) - 1023

ReadRecord

Decx_deRecord

Active.TEndS = Clock"l]me.$

Actlve.TotalRecords = LOF(1) / 1024

SEEK #1, 1

ReadRecord

De4xMeReoord

Active.Record = 2

Active.ByteLoc = ByteLoc
Active.'l_tart$ = ClockTime$

Dos = Active

END SUB

* t. * @@ 4, ** *@* 0.* * @* @ I_/, @ * • * @ * @ 0@ • @* *4' &@ 6@ O'O*@('/' _0 * *0 * 0" * * • * * @/' *& it &@ • 0_1, • &6 @ _& * 6@ • &@ * *6 @/'@ _' @/' @ *O @ * O@@ ** @* _' *@ * *e *

SUB OpenNewF'de

' CALLed by: AscllPitchRoll; Col_ExbToDos

SUB OpenNewFile (FileName$)

ValidName$ = ""

DO

FileNo% = FREEFILE

EnterFileName FileName$, Valid$

IF LTRIM$(FileName$) = ""THEN EXIT SUB

OPEN RTRIM$(FileName$) FOR BINARY AS #FileNo%

IF LOF(FileNo%) <> 0 THEN

Message 17, "File " + RTRIM$(FileName$) + " already exists"

Message 18, "Enter a new filename"

Message 22, "PRESS ANY KEY TO CONTINUE"

x$ = "': DO: x$ = INPUt(I): LOOP UNTIL x$ <> ""

ValidName$ = "N"

END IF

CLOSE #FileNo%

LOOP WHILE ValidName$ = "N"

END SUB

70

' Display experiment parameters and variables during screen plotting of the radar return.
w

' CALLed by: StepBackwards; StepForwards

SUB ParameterDisplay

SUB ParameterDisplay

LOCATE 12, 3
PRINT "Clock time: "; : COLOR 11

PRINT Clock'l]me$; : COLOR 15

PRINT " Pulse #: "; : COLOR 11

PRINT USING "*4###M'; Actlve.Record - 1; : COLOR 15

PRINT ' Pointing angle: '; : COLOR 11

PRINT USING "###.#'; Dta.ShaftAngle!: COLOR 15
LOCATE 13, 3

PRINT "tick time : w; : COLOR 11

PRINT Dm.'13ck'Hme; : COLOR 15

LOCATE 13, 49

PRINT "Pitch angle: "; : COLOR 11

PRINT USING "##_.##'; Dta.Pitch: COLOR 15

LOCATE 14, 4Q

PRINT" Roll angle: "; : COLOR 11
PRINT USING "###.##'; Dta.Roll: COLOR 15

LOCATE 16, 3

PRINT 'Trigger delay "; : COLOR 11

PRINT USING "##### \ \"; Dta.TriggerDelay; : COLOR 15:
PRINT" meters, w

' Decode and display GPS latitude and longitude, if present
IF CVI(MID$(Dta.Header, 37, 2)) = 1009 OR CVl(MID$(Dta.Header, 41, 2)) = 1010 THEN

GPSDisplay MID$(NewReconi, 771, 8)
ENDIF

END SUB

444444444444444444444 "44444444444 _444444044444 _444044444444444 • _44444444444 O 4444444444444444444 _ 444444444 * 44

FUNCTION PcClock'Ilme$

' Decode the bytes that contain the output from the pc real-time clock. The three bytes that contain the data
' are encoded in binary coded decimal format with the lowest byte having hours, the middle byte having
' minutes, and the highest byte having seconds.

' CALLed lq: DecodeRecord; MERGE

FUNCTION PcCIockTime$ (PcCITime$)

DIM T AS STRING 4 8

13 = "00:00:00"

Hrs$= HEX.$(CVI(MID$(PcCITime$,I,1)+ CHR$(0)))

Mid --I-[E_(CVI(MID$(POCITimd, 2,I)+ C}IR$(0)))

Sec$ = HEX$(CVI(MID$(PcCI'I3me$,3,I)+ CHR$(0)))

MID$(13, 3- LEN(I-Irs$),LEN(Hrs$))= Hrs$
MID$("I_,6 -LEN(Min$),LEN(Min$)) = Min$

MID$(13, 9 - LEN(Sec,$), LEN(Sec$)) =Sec$

PcClock"fime$= 13

END FUNCTION

71

FUNCTION PcTim*$

' Decode th© Pc compu|er 'tick" time based on 18.20648 ticks per second. PeT& = CVL(MID$(NewRecord$, 751, 4))
' is passed to this fuactiou. (What determines when the tick count is zeros.'?)

' CALLed by: DecodeReco_;

FUNCTION Pc'timeS (PcT&)

ExbTapeLog

DIM T AS STRING * 11

CONST Max"ticks& = 24 * "13eksPerSec * 3600

"r$=,oo:oo:oo.oo,

SELECT CASE PcT&

CASE IS > Max'!3cks&

T$ = "BAD TIME "

CASE ELSE

Hr# = PcT& / CllcksPerSec * 3600)
MiD#= 0_- rrcr0--1_)• 6o_
Sec_ = (Min# - INT(Min#)) * 60!

Hrs$ = LTRIM$(STR$(INT(Hr#)))

MinS = LTRIMS(S'r_(t_CT(_n_)))

Sees = LTRIM$(STR$(INT(Seca)))
HundredthSecr,$ = LTRIM$(S'IR$(INT(Seca * 100) - 100 * INT(Sec#)))

MIDS('I'$, 6- LEN(Min$), LEN(Min,$)) = Mies
MIDS('rS,9- LEN(SecS).LEN(SecS))=SecS
MID$(T$. 12 - LEN(HundredthSecs$). LEN(HundredthSecs$)) = HundredthSecs$

END SELECT

Pc']3meS = "r$

END FUNCTION

FUNCTION PitchRoil!

' Convert the pitch and roll in degrees for a 14 bit shaft angle encoder. The 120 degrees is subtracted because the
' shaft angle encoder was incorrectly wired for the ERS1 mission in November of 1991.

' CALLed by: DecodeRecord
I

FUNCTION PitchRol!! (AS)

PitchRoll! = 360[* CVI_(AS + CHR$(0) + CHP_(0)) / (2 " 14) - 120!

END FUNCTION

72

' Plot the radar waveform and display auxiliary data below the waveform. The user can step forward one record at
' a lime, step backward one record at a time, or step continuously forward.
w

' CALLtd by: DosPreProcessing; ExbPreProcessing

SUB PlotRadReturn

SUB PlotRadRetum ' [12/10/91]

KEY OFF

BegEndByte WaveformStart%, WaveformStop%

StartByte% = WaveformStart% + HcaderLength%
StopByte% = WaveformStop% + HcaderLength%

SCREEN 12

VIEW (1, 1)-(600, 128)
WINDOW (StartByte%, 256)-(StopByte%, 1)
VIEW PRINT 12 TO 30

Help2
DO: LOOP WHILE INKEY$ <> "'
Code% = 0

DO

Code2%=KeyCode0NKEYS)

SELECT CASE Code2%

' Select valid keys for interrupt. 1000 is added to the ALT keycodes.

CASE 1048,1033,70,66,27
Code% = Code2%

END SELECT

IF File,SourceS= 'EXB" THEN

CALLS XSENSE(SenseStatus(0), IERR%)
IF SenseStatus(2) o 0 THEN

CheckExbStatus SenseStatus(2)
Help2

END IF
END IF

SELF_L_ CASE Code%

CASE 70, 1033 ' [F] forward one record
' [ALT-F] continuous forward

StepForwards Code%, StarIByte%,StopByle%

CASE 66, 1048 ' [B] backwards 1 record
' [ALT-B] continuous backwards

' Don't step the EXABY"rE 8200 backwards

IF FileSource$= 'DOS" THEN

StepBackwardsCode%, SlartByte%,StopByte%
ELSE

Code% = 0
END IF

73

CASE 27 ' [ESC] exit display

EXIT DO

CASE ELSE ' invalid key

END SELECT

Help2

IF FileSource$ = "DOS" AND Aclive.Reoord > Active.TotalRecords THEN
VIEW PRINT

LOCATE 26, 28
PRINT "END OF FILE"

DO

Code% = KeyCode_NKEY$)
LOOP UNTIL Codegt = 66 OR Code% = 1048 OR Code% = 27
LOCATE 26, 28: PRINT =

END IF

LOOP

SCREEN 0

KEY ON

END SUB

SUB PlotRadRetura (coat.)

74

' CALLed_: AscllPitchRoll;

Dar, PreProcest'ing ;

FileN;

RecordN

CopyExb ToDos;

F.xbFile; ExbPreProcessing;

F ir,stM e nu ;

D osF ile ;

MERGE;

SUB PresentFile

RowOfISet% = 4

ColOffSet_, = 16

SELECT CASE FileSource$

CASE "DOS"

Active = Dos

CASE "EXB"

Active = Exb

CASEE_E

ResetAcfiveStats

ResetDta

END SELECT

RecordNumber& = Actlve.Record - 1

COLOR 3, 0: LOCATE RowOffSet%, ColOffSet% - I

PRINT CHR$(201); STRINGS(52, CHR$(205)); CHR$(187)

FORi=0TO4

I.DCATE RowOfISet% + i + 1, ColOffSet% - 1: PRINT CHR$(186)

LOCATE RowOftSet°ff, + i 4- 1, ColOffSet% + 52: PRINT CHR$(186)
NEXT

LOCATE RowOffSetq_ 4- 6, ColOflSet% - 1

PRINT CHR$(200); STRINGS(S2, CHR$(205)); CHR$(188)

COLOR 7, 0: LOCATE RowOffSet96 4- i, CoIOf_et% + 1

PRINT "FILE:"

COLOR 4, 7: LOCATE RowOffSet% 4- 1, ColOffSet% 4- 7

PRINT RTRIM$(Active. FileName)

COLOR 7, 0: LOCATE RowOffSet% 4- 2, ColOft'Set% 4- 1

PRINT "TOTAL RECORDS: ";

COLOR 4, 7: PRINT Active.TotaIRecords

COLOR 7, 0:. LOCATE RowOffSet% + 3, ColOffSet% 4- 1

PRINT "STARTING TIME: ";

COLOR 4, 7: PRINT " " 4- Active.TStart 4- _ _;

COLOR 7, 0: PRINT " ENDING TIME: _;

COLOR 4, 7: PRINT" " + Active.TEnd + " "

COLOR 7, 0: LOCATE RowOffSetg_ + 5, ColOffSet% 4- 1

PRINT "PRESENT RECORD #: ";

COLOR 4, 7: PRINT RecordNumber&;

COLOR 7, 0: PRINT " TIME: ";

COLOR 4, 7: PRINT " " 4- Clock'I]me$

COLOR 7, 0

END SUB

SUB PrtsmtFth

75

' CAZ_dby: CovyExbToDos; Da_PreProccssing; ExbPreProeessing;

ExbTapeLog; F_eN; MERGE;
OpenExistlngFile; RecordN; StepBaekwards;

StepForwards; Waterfall

SUB ReadRecord

SELECT CASE FileSource$

CASE "DOS"

NewRecord = INPU'P$(1024, 1)

CASE "F_XB"
CALLS XRCHR(NewRecord, 1, IERR%)

END SELECT
Active.Record = Active.Record + 1

END SUB

' Move reo_rd pointer to record number N. For EXABYTE files the pointer is positioned
' at the end of record N while for DOS files the pointer is at the beginning of record N.
i

' CALLed by: A_cIIPi_hRoll; CopyExbToDos; DosPreProcessing;
' ExbPreProcessing
F

SUB ReadRecord

SUB RecordN

S& = 0!

SELECT CASE FileSource$

CASE "DOS"

DO

CLS

PresentFile

Message 17, "Enter the first record number for processing."
EnterRecord S&

IF S& = Active.Record - 1 THEN

EXIT SUB
END IF

IF S& > LOF(1) / 1024 THEN
PresentFile

TextS = "Your starting record number is beyond the end of the file."
Message 17, TextS
Message 18, "Enter a new number."
BEEP
SLEEP 1

END IF

LOOP WHILE S& > LOF(I) / 1024
Active.Record = S&

SEEK #1, (S& - 1) * 1024 + 1

SUB RecordN

CASE "EXB"

76

RecordsMoved& = 0

Message 17, "Enter the first record number for processing."
EnterRecord S&

IF S& = Active.Record - 1 THEN
EXIT SUB

END IF

SUB RecordN (cont.)

W S& = 1 AND Active.HleNo = 1 THEN
Rewind
ResetExbStats
Active = Exb
ReadRecord
Dec_odeRecord
Acfive.'IStart = ClockT_me$
EXIT SUB

END IF

IF Active.Record = 0 THEN
ReadRecord
DecodeRecord
Acfive.TStarl = ClockTtme$

END W

Jump& = S& - Actlve.Record
MoveRecords% = SGN(Jump&) * 32000
IF (Jump& < 0) AND (S& < 500) AND Active.Record • 1000 THEN

' If it is necessary to move backwards to n_r the beginning of the file,
' it is quicker to go to the first record and then step forward.

CALLSXSKIPF(-1,_RR_)
CALLSXSKn'F(I._)
Jump& = S& - I

END IF

CALLS XSENSE(SenseStatus(0), IERR%)

DO WHILE (ABS(Jump&) • 0) AND (SenseStatus(2) < 128)

IF ABS(Jump&) <= 32000THEN MoveRecords% = Jump&
CALLS XSPACE(MoveRecords%, IERR%)
RecordsMoved& = RecordsMoved& + MoveRecords%

Jump& = Jump& - MoveRecords%
DecodeRecord

Update
LOOP

CALLS XSENSE(SenseStatus(0), IERR%)

IF SenseStates(0) AND 128 THEN

' Test if trying to jump ahead more records than are in the file.

NonRecords& = SenseStatus(4) * (256! ^ 2) + SenseStams(5) * 256! + SenseSlatus(6)
RecordsMoved& = RecordsMoved& - NonRecords&

END IF

IF (SenseStatus(2) AND 128) THEN ' If EOF.
Active.TotalRecords = Actlve.Record + RecordsMoved&

Message 17, "EOF reached."

CALLS XSKIPF(-I,IE_)

CAI.ZS XSPACE(-I, IERR%)
Active.Record= Active.Record- I

END IF

CALLS XSENSE(SenseStatus(0),IERR%)

77

IF (SenseStatus(2) AND 8) THEN ' If EOD.

Message 17, "EOD reached. Read head moved past last EOF."

TextS = "Tape will be positioned at end of last file."
Message 18, TextS

IF Active.Reoord = 0 THEN

CALLSXSKIPF(d, IERR_)
CALLS XSPACE(-1, IERR%)
RecordsMoved& = 0

ELSE

Message 19, "NOTE: Last file does not have an EOF."
CALLS XSPACE(-1, IERR%)
RecordsMoved& = 0

END IF

END IF

Actlve.Record = Active.Record + RecordsMoved&
ReadRecord
DecodeRecord

Update

IF Active.Reoc_rd = Active.TotalRecords THEN
Active.TEnd = ClockTime,$

ELSEIF Active.Record = 1 THEN
Active.'rStart = Clock'13me,$

END IF

Actlve.ByteLoc = (Active.Record - 1) * 1024 + 1
Exb = Active

END SELECT

END SUB

SUB RecordN (coat.)

78

' CALLed by: MAIN; FirstMenu;

SUB Reset/,.c_veSmts
,axdve,FileName --.SPACES(40)

Active,FileNo = 0
Active."IStan = "
Active.TEnd = "

Active.Record--0

Acdve.TotalRecords= 0

Active.BytvLoc= 0
END SUB

PresentFile

SUB R_tA_veSt_ts

** * 4. • e O(J 404 ** * '4 * 4" * 4,* 4.4 * 4_ * O* * #0 _00. _& 41S* _4464 _41Q44444 _ 444 #0 _404 i_* 444 # 0' • 04 _ 4_ 4.44 6e • _O 41 *404044"44"4 _44

SUB RtsctDosStats

' CAl3xd by: MAIN; DesFile; Em¢rFiltName; Fila_pen

SUB gesetDosStats
CLOSE #1

Dos.HleNam¢ = SPACF..$(40)
Dos.HI©No = 0
Dos.q'Smrt = _
Dos.TEed = " w

Dos.Record = 0
Dos.Tomll_cords = 0

Dos.Bytel._c = 0
END SOB

** * .4 I1' O O * *O* * 4" O* # ** * 4' * *# * 4' 0 #ll'* O# _ #O # O_* 40 #'44 Ib* _ ## e_* 8 #_ # ##* 04 Q Ibl # ## # _* * #4* *** * 0* I1' 4,* • #4* && 01 _& _*Q Q _ _ # 4_#

SUB RtsctDta

' CALLed by: MAIN; FimMerv_; PmsentFil#

SUB ResetDta
Dta.Headef = SPACE$(HeaderLength%)
Dta.Radar = SPACES(700)
Dta.Accurate'Hme = SPACE$(ll)
Dta.TickTime = SPACES(11)
Dta.TrueTime = SPACES(8)

Dm.Trigg_rD_lay = 0
Din.Pitch = 0

Din.Roll = 0

Dta.ShaftAngle = 0

END SUB

SUB ResetExbStats

' CALLed by: MAIN; ExbFile; FileN; RecordN

SUB ResetE, xbStats
Exb.HleNo = 1
Exb.'P3tart = _

Exb.T_nd ffi*
Exb.TotalRecords = 0
Exb.HleName = RTRIM$('Exabyte file # ") + 't"

Exb.Reeord = 1

Exb.ByteLoc = 1
END SUB

79

'_d by: ExbTapeLog; RecordN

SUB Rewind

SUB Rewind ' Rewind EXABYTE tapetoLBOT

Message 17, "REWINDING TAPE."

CALLSXREWUD(IERR_)
Mes_ge 17, "COMPLETED."

END SUB

• ••••• •• •••• •• • •• • •• • •• • •• • •• ••0 • •• • •• ••0• •• • • • • •• • •• ••• • •0 • •0 • •• • • • • • • • 0• •••• •• • •• • •• •• 0• •• • •0 • • • ••• • 00 • •• •

FUNCTION RotatioeAn#e!

' Decode the mtatlon angle of the antenna shaft as implemented after September 1991.

' CAI£mt by: DecodeRecord; Sha$_Anzle
I

' INPUT: binary coded decimal degrees to 0.1 degrees
' OUTPUT: decimal degrees
p

FUNCTION RotationAnglel (RotAng$) ' [12/17/91]

LeftBits% = CVI(MID$(RotAeg$, 1, 1) + CHR$(O))
RightBits% = CVI(MID$(RotAng$1 2, 1} + CHR$(0))

Aagl! = I00!• ((RightBits% AND 48) \ 16)+ I0! * (P,ightBits% AND 15)
Ang2! = .1 • (LeftBits% AND 15) + 1! • ((LeftBits% AND 255) \ 16)

RotadonAngle! = Angl! + A_g2!

END FUNCTION

• • 4•4 • •• • 4• ••••••• •• • •• • ••• 6• • •• •••• •• • • • • •• • •• • •• • •• • •• * 6• • •• •• 00 •• • •• • •0 • •• • • • • • • • •• • •• • •• • •• • •• • •0 • • • 0•••

SUB ShaftAngle$

' "Correct" the raw antenna shaft angle values for missing bits. The corrected angle is accurate to about +/- 0.4 deg.
)

'C_ALL*d by: DecodeRecoed; MERGE

FUNCTION ShaftAngle$

STATIC Anglel AS SINGLE, Angle2 AS SINGLE

Angle2 = Anglel
AngleS = MID$(NewRecord$, 767, 2)
Angle1 = RotatiouAngle!(AngleS)

' Test and correct for missing 1 deg. biL
IF (Angle2 - Angle1 < {3)OR (Angle2 - An#el >= 1) THEN ' NOTE: This text doesn't work correctly

when 'theanglegoesacro_ 360 degrees.

Ang|el= Anglel + II
END IF

a4% = INT((INT(Anglel))/ I00)

a3% = INT((INT(Anglel)-a4% * I00)/10)

a2% = INT(Anglel)-a4% • I00 -a3% • I0

al% = INT((Anglel- INT(Anglel))* 10)

BcdAngle% = ai% + (2^ 4) • a2% + (2^ 8) • a3% + (2^ 12)• a4%

BcdAngle% = BcxlAngle%+ (CVI(AngleS)AND &HCXX_)

ShaftAngles= MKI$(BcdAngle%)

END FUNCTION

80

' Find the earliest time between the mission starting time, the first INS time, and the first GPS time.
i

' CALLed by: MERGE

SUB STARTINGTIME (StartS]me&, Mr&, IT&, GT&)

SUB STARTINGTIME

Tn=3

DIM Times(Tn) AS LONG

'times&(1) = Mr&: "Bmes&(2) = IT&: Times&(3) = GT&

' Find the earliest time and use as the mission starting time. Algorithm assumes less than 2 hours (7200 sees) between the earliest

' and latest starting times for acquiring GPS and INS data and the operator entered "Mission" starting time.
DO

MINMAX Times& 0, Tn, MinTime.&, MinElement, MaxTime&, MaxEiement
IF Max'rime& > MinTime& + 7200 THEN

Times&(MinElement) = Times&(MinElement) + 86400
ENDIF

LOOP UNTIL MaxTime& <= MinTime& + 7200

StartTime& = "l'imes&(MinElement)
ERASE Times&

END SUB

4" * 44444444444 * 44444 * 44 * 44444444 * 44444 * 44 * 44444 * 44444444444444 * 44444 * 44 * 44444444 * 44 * 44444444 * 44 * 44 * 44044*4 *_

SUB StepBackwards
' Steps a DOS file backwards one record at a time. NOTE: With the present EXABYTE drive, it isn't
' practical to step backward through a file one record at a time.

' CAl_d by: PlotRadarReturn

SUB StepBackwards (C%, StrBy%, StpBy%)

Active.Record = Active.Record - 2

IF Active.Record > 0 THEN

SEEK 1, ByteLoc&
ReadRecord
DecodeRecord

ParameterDisplay
WaveFormPIot StrBy%, StpBy%

ELSE
Active.Record = 1

SEEK 1, ByteLoc&
ParsmeterDisplay
WaveFormPiot 1, 1
VIEW PRINT

LOCATE 26, 28
PRINT "BEGINNING OF FILE"
DO

Keystroke C%
LOOP UNTIL C% = 70 OR C% = 33 OR C% = 27

LOCATE 26, 28: PRINT "
END IF

' Tesl for beginning of file.

' At beginning of file.

IF C% = 66 THEN C% = 0

END SUB

81

' CALled by: PloCRadarRe_u'n

SUB SlepForwards

SUB StepForwards (C%, StrBy%, StpBy%)

ReadRecord
DecodeRecord

PammeterDisplay
WaveFormPIot StrBy_, StpBy%
IF C% = 70 THEN C% = 0

END SUB

** * 0606* J Q * • *_ e e* * * ** ** * $ • * * * Q ** ** * * ** * $0 ** $0 O* * *$ * e* $ $$ * * * * $* * *$* @* _,_Ib,,, O* **Q _0 ** O* @ *@ * *** * * * i_e i_ ** O* • _05

FUNCTION TmcGP_

' Read the time in ASCII from the GPS file and convert to a long integer. Eight
' seconds are sublracted from the time Io bring it into correspondence with UTC.
)

' CALLed by: MERGE; MerfeGPS

FUNCTION TimeGPS& (I)$)

_% =nqSVg(DS,',-)
Te96 = INSTR('Ib% + 1, D$, ",')

= MID$(D$, Tb% + 1, Te% - Tb% - 1)

IFTe% -Tb% = 9 THEN

Hr&= VAL(MIDS(G_, I, 2)) " 36OO
Mie&= VAL(MIDS(Op_,3, 2)) * 60
sex&= VAL(MID$(Gps$,5))- 8

TlmeGPS& = Hr& + Min& +Sec&

ELSE ' If GPS field is less than 8 characters put appropriate code here.

ENDIF

END FUNCTION

' C41.2_d by: AscllPitchRoll; Col_ExbToDos; ExbPrePr_essing;
RecordN

SUB Update

COLOR 7, 0: LOCATE RowOffSet% + 5, ColOftSet% + 1
PRINT "PRESENT RECORD #: ";

COLOR 4, 7: PRINT Active.Record - 1;
COLOR 7, 0: PRINT" TIME: ";
COLOR 4, 7: PRINT " " + Clock'timeS;

COLOR 7, 0: PRINT " " ' Blanks some previous characters

END SUB

SUB Update

82

' CALLed by: EnterFileName

SUB VaUdROWSF'de

SUB ValidROWSFile (Vn$, FileNo%)

SE_ CASE LOF(FileNo%) / 1024

CASE IS <> INT(LOF(FileNo%) / 1024)

Message 17, "Probable non-ROWS or corrupted data file"
Va$ = "N'
SLEEP 2

CASE 0

Message 17, RTRIM$(Active.FileName)
Message 19, "does not exist"
KILL Active.FileName
Vn$ = 'N"

CASE ELSE

Active.Record = 1

Active.ByteLoc = 1
Vn$ = "Y'

END SELECT

END SUB

O ** * #e * *0 .0 eO * *O * ** * O* * O* ** O* *** ** #*# * *O • * # • • * • _i # #0 • O_ • _ .0.0 *_ • * * * ** * ** * * * * * * * ** * ** ** _600 & • • * O* * ** * ** *

SUB Vm

' Display the PREROWS program version. (9/23/92)

' Called by: FirstMenu

SUB Version

CLS

Message 12, "PREROWS version 2 (10/13/92)"
Message 14, "Use with ERS-1 mission and later"
IDLE

END SUB

83

' Color coded waterfall display of ROWS pulse data.
,

' Convert a byte to a 16 bit integer by appending an ASCII 0 to the righthand byte of the word.

' _4LLedl,_:
,

SUB Waterfall

DasP reProc #ssin &; ExbPre.Processing

DIM l_leByteLength AS LONG
STATIC NumOfRecords&

KEY OFF
StartRecord& : Active.Record
SELECT CASE FileSource$

CASE *DOS"

FileByteLength ; Active.TotalRecords * 1024

CASE *EXB"

IF NumOt'Records& <= Actlve.Record + I THEN
CLS

Texts = "Enter the largest valid record number for processing"
Message 15, TextS
INPUT ;NumOfRecords&

END IF

FlleByteLength -- NumOfRecords& " 1024

END SELECT

IF Actlve.Record >= (FileByteLength / 1024 - 1) THEN
CLS

Message 17, *NOTHING TO DO"
SLEEP 2
EXIT SUB

END IF

BegEndByte WaveformStart%, WaveformStop%
ColorLevels

StartByte% = WaveformStart% ÷ HeaderLength%
StopByte% = WaveformStop% + HeaderLength%

ViewX1% = 30: ViewY1% = 40

ViewX2% = 619: ViewY2% = 459

WindowX1% = 0: WindowY1% = StartByte%
WindowX2% -- ViewX2%: WindowY2% = StartByte% + ViewY2%

SCREEN 12

VIEW (ViewXl%, ViewYl%)-('ViewX2%, ViewY2%)
WINDOW ('WindowXl%, WindowYl%)-(WindowX2%, WindowY2%)

IF (FileByteLength - Active.ByteLoc + 1!) / 1024 >= WindowX2% THEN
Wdth% = WindowX2%

ELSE

Wdth% = (FileByteLength - Active.ByteLoc + I) / 1024
END IF

SUB Waterf-n

84

IF (StopByte% - StartByte%) > 479 THEN StopByte% = StartByte% + 479

SUB Watzrfaa (coaL)

ColCoord% = ViewX1% / 8! - 31

RowCoord% = 25! - (1! 4 (StopByte% - StartByte% - ViewY1%) / 18!)

StartRecord& = Active.Record
ReadRecord
DecodeRecord

Active.ByteLoc = ByteLoc

LOCATE RowCoord%, ColCoord%

PRINT USING '_ \'; Clock'rlme$

k=0

DO WHILE Active.Record < Wdth_ + Sta_Record& AND Active.Record <= FileByteLength - 1023
k=k+l

IF KeyCode% (INKEY$) = 27 THEN EXIT DO
ReadRecord
DecodeRecord

FOR j = StartByte% TO StopByte%

PSET (k, j), ColorLevel(CVl(MID$(NewRecord, j, 1) + CHR$(0)))
NF_XTj

LOOP

LOCATE RowCoord%, Wdth% / (8! 4 WindowX2% / 620!) - 5
PRINT USING _, \'; ClockTime$

DO: ItS : I_$: LOOP WHILE kS <> '"

DO: kS = INKEY$: LOOP WHILE kS = ""

SCREEN O

Active.ByteLoc = ByteLoc

END SUB

4 "444444444444444444444. * 4. ** .4 * * * ** 4** * ** * * ** ** * 4. * ** * ** * ** *4** 4" *** * ** * ** * * * * * * * ** * 4" * * ** * * * ** * ** * ** * * * *

SUB WaveFormPlot

"CALLed by: StepBacltwards; StepForwards

SUB WaveFormPIot (StartByte%, StopByte%)

DIM WaveForm(700) AS INTEGER

REDIM WaveForm(StartByte% TO StopByte%) AS INTEGER

CLS I

WaveForm%(StartByte%)= CVl(MID$(Dta.Radar,StartByte%,I)+ CHR$(0))

FOR i = StarlByte% + 1 TO StopByte%
WaveForm%(i) = CVI(MID$(Dta.Radar, i - HeaderLength%, 1) + CHR$(0))
LINE (i - 1, WaveForm%(i - 1))-(i, WaveForm%(i)), 10

NEXT

END SUB

85

'CAIJ_d by: Col_ExbToDa_; MERGE

SUB WrileRecord(FileSourceS,FileNumber%)

SELECT CASE File.SourceS

CASE "DOS"

PUT FileNumber_,,NewRecord

CASE "EXB"

CA].J_ X'WRCHR(NewRecord, I,IERRg_)

DriveReady

END SELECT

END SUB

SUB WriteRecerd

86

I Form ApprovedREPORT DOCUMENTATION PAGE OMSNo.o -oI
Public reporting burden for this ¢olleclk3n of information is estirnated to average 1 hour pu response, induding the time (or reviewing Instruc_lons, searching existing data soumes, gathedflg

lU'KI malntatning 1he dala needed, and COml:leting and reviewing the collection of Information. Send cornrnerds regarding this burden estimate o¢ any o_her aspect of Ihb collection of

Inform_ton. including suggeeSon$ for reducIng this burden, to Weshington HeadqueJ'tem Services, Directorate for InforrrBtion Operations and Report=, 1215 Jefferlon Davis H_hway, Suite

1204, Adin_on, VA 22_Y2..4302. and to the Office of Management and Budget. Paperwork Reduction Project (07_..!88_, Wuhin_lon, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Technical Memorandum

4. TITLE AND SUBTITLE
Radar Ocean Wave Spectrometer (ROWS) Preprocessing
Program (PREROWS2.EXE)
User's Manual and Program Description

6. AUTHOR(S)

C.R. Vaughn

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Laboratory for Hydrospheric Processes
Goddard Space Flight Center
Wallops Right Facility
Wallops Island, Virginia

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

5. FUNDING NUMBERS

972

8. PERFORMING ORGANIZATION

93B00031

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

TM-11M579

11. SUPPLEM ENTARY NOTES

12,,. DISTRIBUTION/AVAILABlUTY STATEMENT

Unclassified-Unlimited

Subject Category 48

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Technical Memorandum is a user's manual with additional program documentation for the computer program

PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an
active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in i990. PREROWS2.EXE
is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying
blocks of data from the original 8mm tape to a PC file.

14. SUBJECT TERMS

Computer Program, User's Manual, ROWS, Radar, Oceanography

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
ii i

4SN 7540-01-280-5500

18. SECURITY CLASSIFICATION lg. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

i 15. NUMBER OF PAGES

87
16. PRICE CODE

20. LIMITATION OF _.E_ i HACT

Unlimited
i ii

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-10, 298-102

